Chemical and photoinduced nuclease activity of a novel minor groove DNA binder CuII complex

Ufuk Yildiz, Burak Coban

Abstract


A new type of copper (II) metal complex containing 1,10-phenanthroline (phen) and 8-(difluoromethoxy)-3,4-dihydro-2H-[1,3]thiazino[3,2-a]benzimidazole (dtb) ligands has been prepared and characterized. The ds-DNA interaction of complex has been studied by UV-visible (UV-Vis), competitive fluorometric titration with ethidium bromide (EB) and DAPI, viscosity measurement and agarose gel electrophoresis. The results show that the complex can bind to ds-DNA in minor groove by displacing DAPI molecules. DNA cleavage mechanism studies revealed that hydrogen peroxide radicals are responsible for DNA oxidative cleavage.


Keywords


Cu(II)-phenanthroline; chemical nuclease activity; DNA-binding affinity; minor groove binding

Full Text:

PDF (1,680 kB)

References


1. L. Kelland, Nat. Rev. Cancer 7 (2007) 573 (https://doi.org/10.1038/nrc2167)

2. R. Tandon, V. Luxami, H. Kaur, N. Tandon, K. Paul, Chem. Rec. 17 (2017) 956 (https://doi.org/10.1002/tcr.201600134)

3. P. Yang, Q. Yang, X. Qian, J. Cui, Bioorg. Med. Chem. 13 (2005) 5909 (https://doi.org/10.1016/j.bmc.2005.07.029)

4. C.-C. Zeng, C. Zhang, S.-H. Lai, H. Yin, B. Tang, D. Wan, Y.-J. Liu, Inorg. Chem. Commun. 70 (2016) 210 (https://doi.org/10.1016/j.jorganchem.2015.10.008

5. K. Wolfgang, R. Jochen, Angew. Chem. Int. Ed. 35 (1996) 43 (https://doi.org/10.1002/anie.199600431)

6. C. Santini, M. Pellei, V. Gandin, M. Porchia, F. Tisato, C. Marzano, Chem. Rev. 114 (2014) 815(https://doi.org/10.1021/cr400135x)

7. M. L. Low, C. W. Chan, P. Y. Ng, I. H. Ooi, M. J. Maah, S. M. Chye, K. W. Tan, S. W. Ng, C. H. Ng, J. Coord. Chem. 70 (2017) 223 (https://doi.org/10.1080/00958972.2016.1260711

8. D. S. Sigman, D. R. Graham, V. D'Aurora, A. M. Stern, J. Biol. Chem. 254 (1979) 12269 (http://www.jbc.org/content/254/24/12269.citation)

9. X.-W. Liu, J.-L. Lu, Y.-D. Chen, L. Li and D.-S. Zhang, Inorg. Chim. Acta. 379 (2011) 1 (http://dx.doi.org/10.1016/j.ica.2011.08.058)

10. G. Cohen and H. Eisenberg, Biopol. 8 (1969) 46

11. E. El Ashry, Y. El Kilany, N. Nahas, A. Barakat, N. Al-Qurashi, H. Ghabbour and H.-K. Fun, Mol. 21 (2016) 12 (https://doi.org/10.3390/molecules21010012)

12. S. U. Rehman, T. Sarwar, M. A. Husain, H. M. Ishqi and M. Tabish, Arch. Biochem. Biophys. 576 (2015) 49 (https://doi.org/10.1016/j.abb.2015.03.024)

13. J. D. McGhee and P. H. von Hippel, , J. Mol. Biol. 86 (1974) 469

14. S. Ramakrishnan and M. Palaniandavar, J. Chem. Sci. 117 (2005) 179 (https://doi.org/10.1007/BF03356114)

15. S. Ramakrishnan, V. Rajendiran, M. Palaniandavar, V. S. Periasamy, B. S. Srinag, H. Krishnamurthy and M. A. Akbarsha, Inorg. Chem. 48 (2009)1309 (https://doi.org/10.1021/ic801144x)

16. B. Selvakumar, V. Rajendiran, P. Uma Maheswari, H. Stoeckli-Evans, M. Palaniandavar, J. Inorg. Biochem. 100 (2006) 316 (https://doi.org/10.1016/j.jinorgbio.2005.11.018)

17. A. Terenzi, G. Barone, A. Palumbo Piccionello, G. Giorgi, A. Guarcello, P. Portanova, G. Calvaruso, S. Buscemi, N. Vivona, A. Pace, Dalton Trans. 39 (2010) 9140 (https://doi.org/10.1039/C0DT00266F)

18. H.-L. Chan, H.-Q. Liu, B.-C. Tzeng, Y.-S. You, S.-M. Peng, M. Yang and C.-M. Che, Inorg. Chem. 41 (2002) 3161 (https://doi.org/10.1021/ic0112802)

19. R. Patil, S. Das, A. Stanley, L. Yadav, A. Sudhakar and A. K. Varma, P. One. 5 (2010) 2029 (https://doi.org/10.1371/journal.pone.0012029)

20. P. Uma Maheswari and M. Palaniandavar, J. Inorg. Biochem. 98 (2004) 219 (http://dx.doi.org/10.1016/j.jinorgbio.2003.09.003)

21. H. Zhao and D. Huang, P. One. 6 (2011) 19923 (https://doi.org/10.1371/journal.pone.0019923)

22. J. K. Barton, A. L. Raphael, J. Am. Chem. Soc. 106 (1984) 2466 (https://doi.org/10.1021/ja00320a058)

23. E. N. Zaitsev, S. C. Kowalczykowski, Nucleic Acids Res. 26 (1998) 650

24. M. R. Eftink, C. A. Ghiron, Anal. Biochem. 114 (1981) 199

25. J. Palmucci, K. T. Mahmudov, M. F. C. Guedes da Silva, F. Marchetti, C. Pettinari, D. Petrelli, L. A. Vitali, L. Quassinti, M. Bramucci, G. Lupidi, A. J. L. Pombeiro, RSC Advan. 6 (2016) 4237 (https://doi.org/10.1039/C5RA20157H)

26. L. S. Lerman, J. Mol. Biol. 3 (1961) 18

27. S. Satyanarayana, J. C. Dabrowiak, J. B. Chaires, Biochem. 32 (1993) 2573 (https://doi.org/10.1021/bi00061a015)

28. J. M. Kelly, A. B. Tossi, D. J. McConnell, C. OhUigin, Nucleic Acids Res. 13 (1985) 6017

29. Y.-J. Liu, J.-F. He, J.-H. Yao, W.-J. Mei, F.-H. Wu and L.-X. He, J. Coord. Chem. 62 (2009) 665 (https://doi.org/10.1080/00958970802266904)

30. X.-L. Hong, Z.-H. Liang and M.-H. Zeng, J. Coord. Chem. 64 (2011) 3792 (https://doi.org/10.1080/00958972.2011.628989)

31. S. Satyanarayana, J. C. Dabrowiak and J. B. Chaires, Biochemistry, 31 (1992) 9319

32. B. Atabey-Özdemir, O. Demirkiran, U. Yildiz, I. O. Tekin and, B. Coban, Bulgar. Chem. Commun. 49 (2017) 901

33. B. Coban, N. Eser and I. Babahan, Bulgar. Chem. Commun. 49 (2017) 908 (http://www.bcc.bas.bg/BCC_Volumes/Volume_49_Number_4_2017/BCC-49-4-2017-4492-Coban-901-907.pdf)

34. B. Coban, I. O. Tekin, A. Sengul, U. Yildiz, I. Kocak and N. Sevinc, J. Biol. Inorg. Chem. 21 (2016) 163 (https://doi.org/10.1007/s00775-015-1317-8)

35. M. Das, B. Kumar Kundu, R. Tiwari, P. Mandal, D. Nayak, R. Ganguly, S. Mukhopadhyay, Inorg. Chim. Acta. 469 (2018) 111 (https://doi.org/10.1016/j.ica.2017.09.053)

36. Q. Gan, C.-L. Zhang, B.-F. Wang, Y.-H. Xiong, Y.-L. Fu, Z.-W. Mao, X.-Y. Le, RSC Advan. 6 (2016) 35952 (https://doi.org/ 10.1039/C6RA01868H)

37. P. Shi, M. Lin, J. Zhu, Y. Zhang, Q. Jiang, J. Biochem. Mol. Toxicol. 23 (2009) 295 (https://doi.org/10.1002/jbt.20292)




DOI: https://doi.org/10.2298/JSC180802102Y

Copyright (c) 2018 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.797 (139 of 171 journals)
5 Year Impact Factor 0,923 (134 of 171 journals)