Chemical and photo-induced nuclease activity of a novel minor groove DNA binder Cu(II) complex
Main Article Content
Abstract
A new type of copper(II) metal complex containing 1,10-phenanthroline (phen) and 8-(difluoromethoxy)-3,4-dihydro-2H-[1,3]thiazino[3,2-a]benzimidazole (dtb) ligands was prepared and characterized. The ds-DNA interaction of the complex was studied by UV–Vis spectrophotometry, competitive fluorometric titration with ethidium bromide (EB) and 4′,6-diamidino-2-phenylindole (DAPI), viscosity measurements and agarose gel electrophoresis. The results show that the complex can bind to ds-DNA in the minor groove by displacing DAPI molecules. DNA cleavage mechanism studies revealed that hydrogen peroxide radicals are responsible for DNA oxidative cleavage.
Downloads
Metrics
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
L. Kelland, Nat. Rev. Cancer 7 (2007) 573 (https://doi.org/10.1038/nrc2167)
R. Tandon, V. Luxami, H. Kaur, N. Tandon, K. Paul, Chem. Rec. 17 (2017) 956 (https://doi.org/10.1002/tcr.201600134)
P. Yang, Q. Yang, X. Qian, J. Cui, Bioorg. Med. Chem. 13 (2005) 5909 (https://doi.org/10.1016/j.bmc.2005.07.029)
C.-C. Zeng, C. Zhang, S.-H. Lai, H. Yin, B. Tang, D. Wan, Y.-J. Liu, Inorg. Chem. Commun. 70 (2016) 210 (https://doi.org/10.1016/j.jorganchem.2015.10.008
K. Wolfgang, R. Jochen, Angew. Chem. Int. Ed. 35 (1996) 43 (https://doi.org/10.1002/anie.199600431)
C. Santini, M. Pellei, V. Gandin, M. Porchia, F. Tisato, C. Marzano, Chem. Rev. 114 (2014) 815 (https://doi.org/10.1021/cr400135x)
M. L. Low, C. W. Chan, P. Y. Ng, I. H. Ooi, M. J. Maah, S. M. Chye, K. W. Tan, S. W. Ng, C. H. Ng, J. Coord. Chem. 70 (2017) 223 (https://doi.org/10.1080/00958972.2016.1260711
D. S. Sigman, D. R. Graham, V. D'Aurora, A. M. Stern, J. Biol. Chem. 254 (1979) 12269 (http://www.jbc.org/content/254/24/12269.citation)
X.-W. Liu, J.-L. Lu, Y.-D. Chen, L. Li, D.-S. Zhang, Inorg. Chim. Acta 379 (2011) 1 (http://dx.doi.org/10.1016/j.ica.2011.08.058)
G. Cohen, H. Eisenberg, Biopolymers 8 (1969) 46 https://doi.org/10.1002/bip.1969.360080105
P. A. Sharp, B. Sugden and J. Sambrook, Biochem. 12 (1973) 3055 (https://doi.org/10.1021/bi00740a018)
E. El Ashry, Y. El Kilany, N. Nahas, A. Barakat, N. Al-Qurashi, H. Ghabbour, H.-K. Fun, Molecules 21 (2016) 12 (https://doi.org/10.3390/molecules21010012)
S. U. Rehman, T. Sarwar, M. A. Husain, H. M. Ishqi, M. Tabish, Arch. Biochem. Biophys. 576 (2015) 49 (https://doi.org/10.1016/j.abb.2015.03.024)
J. D. McGhee, P. H. von Hippel, J. Mol. Biol. 86 (1974) 469
S. Ramakrishnan, M. Palaniandavar, J. Chem. Sci. 117 (2005) 179 (https://doi.org/10.1007/BF03356114)
S. Ramakrishnan, V. Rajendiran, M. Palaniandavar, V. S. Periasamy, B. S. Srinag, H. Krishnamurthy, M. A. Akbarsha, Inorg. Chem. 48 (2009) 1309 (https://doi.org/10.1021/ic801144x)
B. Selvakumar, V. Rajendiran, P. Uma Maheswari, H. Stoeckli-Evans, M. Palaniandavar, J. Inorg. Biochem. 100 (2006) 316 (https://doi.org/10.1016/j.jinorgbio.2005.11.018)
A. Terenzi, G. Barone, A. Palumbo Piccionello, G. Giorgi, A. Guarcello, P. Portanova, G. Calvaruso, S. Buscemi, N. Vivona, A. Pace, Dalton Trans. 39 (2010) 9140 (https://doi.org/10.1039/C0DT00266F)
H.-L. Chan, H.-Q. Liu, B.-C. Tzeng, Y.-S. You, S.-M. Peng, M. Yang, C.-M. Che, Inorg. Chem. 41 (2002) 3161 (https://doi.org/10.1021/ic0112802)
R. Patil, S. Das, A. Stanley, L. Yadav, A. Sudhakar, A. K. Varma, PLoS One 5 (2010) 2029 (https://doi.org/10.1371/journal.pone.0012029)
P. Uma Maheswari, M. Palaniandavar, J. Inorg. Biochem. 98 (2004) 219 (http://dx.doi.org/10.1016/j.jinorgbio.2003.09.003)
H. Zhao, D. Huang, PLoS One 6 (2011) 19923 (https://doi.org/10.1371/journal.pone.0019923)
J. K. Barton, A. L. Raphael, J. Am. Chem. Soc. 106 (1984) 2466 (https://doi.org/10.1021/ja00320a058)
E. N. Zaitsev, S. C. Kowalczykowski, Nucleic Acids Res. 26 (1998) 650
M. R. Eftink, C. A. Ghiron, Anal. Biochem. 114 (1981) 199 https://doi.org/10.1016/0003-2697(81)90474-7
J. Palmucci, K. T. Mahmudov, M. F. C. Guedes da Silva, F. Marchetti, C. Pettinari, D. Petrelli, L. A. Vitali, L. Quassinti, M. Bramucci, G. Lupidi, A. J. L. Pombeiro, RSC Adv. 6 (2016) 4237 (https://doi.org/10.1039/C5RA20157H)
L. S. Lerman, J. Mol. Biol. 3 (1961) 18 https://doi.org/10.1016/S0022-2836(61)80004-1
S. Satyanarayana, J. C. Dabrowiak, J. B. Chaires, Biochemistry 32 (1993) 2573 (https://doi.org/10.1021/bi00061a015)
J. M. Kelly, A. B. Tossi, D. J. McConnell, C. OhUigin, Nucleic Acids Res. 13 (1985) 6017
Y.-J. Liu, J.-F. He, J.-H. Yao, W.-J. Mei, F.-H. Wu, L.-X. He, J. Coord. Chem. 62 (2009) 665 (https://doi.org/10.1080/00958970802266904)
X.-L. Hong, Z.-H. Liang, M.-H. Zeng, J. Coord. Chem. 64 (2011) 3792 (https://doi.org/10.1080/00958972.2011.628989)
S. Satyanarayana, J. C. Dabrowiak, J. B. Chaires, Biochemistry 31 (1992) 9319 https://doi.org/10.1021/bi00154a001
B. Atabey-Özdemir, O. Demirkiran, U. Yildiz, I. O. Tekin, B. Coban, Bulg. Chem. Commun. 49 (2017) 901
B. Coban, N. Eser, I. Babahan, Bulg. Chem. Commun. 49 (2017) 908 (http://www.bcc.bas.bg/BCC_Volumes/Volume_49_Number_4_2017/BCC-49-4-2017-4492-Coban-901-907.pdf)
B. Coban, I. O. Tekin, A. Sengul, U. Yildiz, I. Kocak, N. Sevinc, J. Biol. Inorg. Chem. 21 (2016) 163 (https://doi.org/10.1007/s00775-015-1317-8)
M. Das, B. Kumar Kundu, R. Tiwari, P. Mandal, D. Nayak, R. Ganguly, S. Mukhopadhyay, Inorg. Chim. Acta 469 (2018) 111 (https://doi.org/10.1016/j.ica.2017.09.053)
Q. Gan, C.-L. Zhang, B.-F. Wang, Y.-H. Xiong, Y.-L. Fu, Z.-W. Mao, X.-Y. Le, RSC Adv. 6 (2016) 35952 (https://doi.org/ 10.1039/C6RA01868H)
P. Shi, M. Lin, J. Zhu, Y. Zhang, Q. Jiang, J. Biochem. Mol. Toxicol. 23 (2009) 295 (https://doi.org/10.1002/jbt.20292).