Chemical and photo-induced nuclease activity of a novel minor groove DNA binder Cu(II) complex

Main Article Content

Ufuk Yildiz
Burak Coban

Abstract

A new type of copper(II) metal complex containing 1,10-phenanthroline (phen) and 8-(difluoromethoxy)-3,4-dihydro-2H-[1,3]thiazino[3,2-a]benzimidazole (dtb) ligands was prepared and characterized. The ds-DNA interaction of the complex was studied by UV–Vis spectrophotometry, competitive fluorometric titration with ethidium bromide (EB) and 4′,6-diamidino-2-phenylindole (DAPI), viscosity measurements and agarose gel electrophoresis. The results show that the complex can bind to ds-DNA in the minor groove by displacing DAPI molecules. DNA cleavage mechanism studies revealed that hydrogen peroxide radicals are responsible for DNA oxidative cleavage.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
U. Yildiz and B. Coban, “Chemical and photo-induced nuclease activity of a novel minor groove DNA binder Cu(II) complex”, J. Serb. Chem. Soc., vol. 84, no. 6, pp. 563–574, Jul. 2019.
Section
Inorganic Chemistry

References

L. Kelland, Nat. Rev. Cancer 7 (2007) 573 (https://doi.org/10.1038/nrc2167)

R. Tandon, V. Luxami, H. Kaur, N. Tandon, K. Paul, Chem. Rec. 17 (2017) 956 (https://doi.org/10.1002/tcr.201600134)

P. Yang, Q. Yang, X. Qian, J. Cui, Bioorg. Med. Chem. 13 (2005) 5909 (https://doi.org/10.1016/j.bmc.2005.07.029)

C.-C. Zeng, C. Zhang, S.-H. Lai, H. Yin, B. Tang, D. Wan, Y.-J. Liu, Inorg. Chem. Commun. 70 (2016) 210 (https://doi.org/10.1016/j.jorganchem.2015.10.008

K. Wolfgang, R. Jochen, Angew. Chem. Int. Ed. 35 (1996) 43 (https://doi.org/10.1002/anie.199600431)

C. Santini, M. Pellei, V. Gandin, M. Porchia, F. Tisato, C. Marzano, Chem. Rev. 114 (2014) 815 (https://doi.org/10.1021/cr400135x)

M. L. Low, C. W. Chan, P. Y. Ng, I. H. Ooi, M. J. Maah, S. M. Chye, K. W. Tan, S. W. Ng, C. H. Ng, J. Coord. Chem. 70 (2017) 223 (https://doi.org/10.1080/00958972.2016.1260711

D. S. Sigman, D. R. Graham, V. D'Aurora, A. M. Stern, J. Biol. Chem. 254 (1979) 12269 (http://www.jbc.org/content/254/24/12269.citation)

X.-W. Liu, J.-L. Lu, Y.-D. Chen, L. Li, D.-S. Zhang, Inorg. Chim. Acta 379 (2011) 1 (http://dx.doi.org/10.1016/j.ica.2011.08.058)

G. Cohen, H. Eisenberg, Biopolymers 8 (1969) 46 https://doi.org/10.1002/bip.1969.360080105

P. A. Sharp, B. Sugden and J. Sambrook, Biochem. 12 (1973) 3055 (https://doi.org/10.1021/bi00740a018)

E. El Ashry, Y. El Kilany, N. Nahas, A. Barakat, N. Al-Qurashi, H. Ghabbour, H.-K. Fun, Molecules 21 (2016) 12 (https://doi.org/10.3390/molecules21010012)

S. U. Rehman, T. Sarwar, M. A. Husain, H. M. Ishqi, M. Tabish, Arch. Biochem. Biophys. 576 (2015) 49 (https://doi.org/10.1016/j.abb.2015.03.024)

J. D. McGhee, P. H. von Hippel, J. Mol. Biol. 86 (1974) 469

S. Ramakrishnan, M. Palaniandavar, J. Chem. Sci. 117 (2005) 179 (https://doi.org/10.1007/BF03356114)

S. Ramakrishnan, V. Rajendiran, M. Palaniandavar, V. S. Periasamy, B. S. Srinag, H. Krishnamurthy, M. A. Akbarsha, Inorg. Chem. 48 (2009) 1309 (https://doi.org/10.1021/ic801144x)

B. Selvakumar, V. Rajendiran, P. Uma Maheswari, H. Stoeckli-Evans, M. Palaniandavar, J. Inorg. Biochem. 100 (2006) 316 (https://doi.org/10.1016/j.jinorgbio.2005.11.018)

A. Terenzi, G. Barone, A. Palumbo Piccionello, G. Giorgi, A. Guarcello, P. Portanova, G. Calvaruso, S. Buscemi, N. Vivona, A. Pace, Dalton Trans. 39 (2010) 9140 (https://doi.org/10.1039/C0DT00266F)

H.-L. Chan, H.-Q. Liu, B.-C. Tzeng, Y.-S. You, S.-M. Peng, M. Yang, C.-M. Che, Inorg. Chem. 41 (2002) 3161 (https://doi.org/10.1021/ic0112802)

R. Patil, S. Das, A. Stanley, L. Yadav, A. Sudhakar, A. K. Varma, PLoS One 5 (2010) 2029 (https://doi.org/10.1371/journal.pone.0012029)

P. Uma Maheswari, M. Palaniandavar, J. Inorg. Biochem. 98 (2004) 219 (http://dx.doi.org/10.1016/j.jinorgbio.2003.09.003)

H. Zhao, D. Huang, PLoS One 6 (2011) 19923 (https://doi.org/10.1371/journal.pone.0019923)

J. K. Barton, A. L. Raphael, J. Am. Chem. Soc. 106 (1984) 2466 (https://doi.org/10.1021/ja00320a058)

E. N. Zaitsev, S. C. Kowalczykowski, Nucleic Acids Res. 26 (1998) 650

M. R. Eftink, C. A. Ghiron, Anal. Biochem. 114 (1981) 199 https://doi.org/10.1016/0003-2697(81)90474-7

J. Palmucci, K. T. Mahmudov, M. F. C. Guedes da Silva, F. Marchetti, C. Pettinari, D. Petrelli, L. A. Vitali, L. Quassinti, M. Bramucci, G. Lupidi, A. J. L. Pombeiro, RSC Adv. 6 (2016) 4237 (https://doi.org/10.1039/C5RA20157H)

L. S. Lerman, J. Mol. Biol. 3 (1961) 18 https://doi.org/10.1016/S0022-2836(61)80004-1

S. Satyanarayana, J. C. Dabrowiak, J. B. Chaires, Biochemistry 32 (1993) 2573 (https://doi.org/10.1021/bi00061a015)

J. M. Kelly, A. B. Tossi, D. J. McConnell, C. OhUigin, Nucleic Acids Res. 13 (1985) 6017

Y.-J. Liu, J.-F. He, J.-H. Yao, W.-J. Mei, F.-H. Wu, L.-X. He, J. Coord. Chem. 62 (2009) 665 (https://doi.org/10.1080/00958970802266904)

X.-L. Hong, Z.-H. Liang, M.-H. Zeng, J. Coord. Chem. 64 (2011) 3792 (https://doi.org/10.1080/00958972.2011.628989)

S. Satyanarayana, J. C. Dabrowiak, J. B. Chaires, Biochemistry 31 (1992) 9319 https://doi.org/10.1021/bi00154a001

B. Atabey-Özdemir, O. Demirkiran, U. Yildiz, I. O. Tekin, B. Coban, Bulg. Chem. Commun. 49 (2017) 901

B. Coban, N. Eser, I. Babahan, Bulg. Chem. Commun. 49 (2017) 908 (http://www.bcc.bas.bg/BCC_Volumes/Volume_49_Number_4_2017/BCC-49-4-2017-4492-Coban-901-907.pdf)

B. Coban, I. O. Tekin, A. Sengul, U. Yildiz, I. Kocak, N. Sevinc, J. Biol. Inorg. Chem. 21 (2016) 163 (https://doi.org/10.1007/s00775-015-1317-8)

M. Das, B. Kumar Kundu, R. Tiwari, P. Mandal, D. Nayak, R. Ganguly, S. Mukhopadhyay, Inorg. Chim. Acta 469 (2018) 111 (https://doi.org/10.1016/j.ica.2017.09.053)

Q. Gan, C.-L. Zhang, B.-F. Wang, Y.-H. Xiong, Y.-L. Fu, Z.-W. Mao, X.-Y. Le, RSC Adv. 6 (2016) 35952 (https://doi.org/ 10.1039/C6RA01868H)

P. Shi, M. Lin, J. Zhu, Y. Zhang, Q. Jiang, J. Biochem. Mol. Toxicol. 23 (2009) 295 (https://doi.org/10.1002/jbt.20292).