Chemical and photo-induced nuclease activity of a novel minor groove DNA binder Cu(II) complex

Main Article Content

Ufuk Yildiz
Burak Coban

Abstract

A new type of copper(II) metal complex containing 1,10-phenanthroline (phen) and 8-(difluoromethoxy)-3,4-dihydro-2H-[1,3]thiazino[3,2-a]benzimidazole (dtb) ligands was prepared and characterized. The ds-DNA interaction of the complex was studied by UV–Vis spectrophotometry, competitive fluorometric titration with ethidium bromide (EB) and 4′,6-diamidino-2-phenylindole (DAPI), viscosity measurements and agarose gel electrophoresis. The results show that the complex can bind to ds-DNA in the minor groove by displacing DAPI molecules. DNA cleavage mechanism studies revealed that hydrogen peroxide radicals are responsible for DNA oxidative cleavage.

Downloads

Metrics

PDF views
436
Jul 07 '19Jul 10 '19Jul 13 '19Jul 16 '19Jul 19 '19Jul 22 '19Jul 25 '19Jul 28 '19Jul 31 '19Aug 01 '19Aug 04 '194.0
| |
Crossref
1

Article Details

How to Cite
[1]
U. Yildiz and B. Coban, “Chemical and photo-induced nuclease activity of a novel minor groove DNA binder Cu(II) complex”, J. Serb. Chem. Soc., vol. 84, no. 6, pp. 563–574, Jul. 2019.
Section
Inorganic Chemistry

References

L. Kelland, Nat. Rev. Cancer 7 (2007) 573 (https://doi.org/10.1038/nrc2167)

R. Tandon, V. Luxami, H. Kaur, N. Tandon, K. Paul, Chem. Rec. 17 (2017) 956 (https://doi.org/10.1002/tcr.201600134)

P. Yang, Q. Yang, X. Qian, J. Cui, Bioorg. Med. Chem. 13 (2005) 5909 (https://doi.org/10.1016/j.bmc.2005.07.029)

C.-C. Zeng, C. Zhang, S.-H. Lai, H. Yin, B. Tang, D. Wan, Y.-J. Liu, Inorg. Chem. Commun. 70 (2016) 210 (https://doi.org/10.1016/j.jorganchem.2015.10.008

K. Wolfgang, R. Jochen, Angew. Chem. Int. Ed. 35 (1996) 43 (https://doi.org/10.1002/anie.199600431)

C. Santini, M. Pellei, V. Gandin, M. Porchia, F. Tisato, C. Marzano, Chem. Rev. 114 (2014) 815 (https://doi.org/10.1021/cr400135x)

M. L. Low, C. W. Chan, P. Y. Ng, I. H. Ooi, M. J. Maah, S. M. Chye, K. W. Tan, S. W. Ng, C. H. Ng, J. Coord. Chem. 70 (2017) 223 (https://doi.org/10.1080/00958972.2016.1260711

D. S. Sigman, D. R. Graham, V. D'Aurora, A. M. Stern, J. Biol. Chem. 254 (1979) 12269 (http://www.jbc.org/content/254/24/12269.citation)

X.-W. Liu, J.-L. Lu, Y.-D. Chen, L. Li, D.-S. Zhang, Inorg. Chim. Acta 379 (2011) 1 (http://dx.doi.org/10.1016/j.ica.2011.08.058)

G. Cohen, H. Eisenberg, Biopolymers 8 (1969) 46 https://doi.org/10.1002/bip.1969.360080105

P. A. Sharp, B. Sugden and J. Sambrook, Biochem. 12 (1973) 3055 (https://doi.org/10.1021/bi00740a018)

E. El Ashry, Y. El Kilany, N. Nahas, A. Barakat, N. Al-Qurashi, H. Ghabbour, H.-K. Fun, Molecules 21 (2016) 12 (https://doi.org/10.3390/molecules21010012)

S. U. Rehman, T. Sarwar, M. A. Husain, H. M. Ishqi, M. Tabish, Arch. Biochem. Biophys. 576 (2015) 49 (https://doi.org/10.1016/j.abb.2015.03.024)

J. D. McGhee, P. H. von Hippel, J. Mol. Biol. 86 (1974) 469

S. Ramakrishnan, M. Palaniandavar, J. Chem. Sci. 117 (2005) 179 (https://doi.org/10.1007/BF03356114)

S. Ramakrishnan, V. Rajendiran, M. Palaniandavar, V. S. Periasamy, B. S. Srinag, H. Krishnamurthy, M. A. Akbarsha, Inorg. Chem. 48 (2009) 1309 (https://doi.org/10.1021/ic801144x)

B. Selvakumar, V. Rajendiran, P. Uma Maheswari, H. Stoeckli-Evans, M. Palaniandavar, J. Inorg. Biochem. 100 (2006) 316 (https://doi.org/10.1016/j.jinorgbio.2005.11.018)

A. Terenzi, G. Barone, A. Palumbo Piccionello, G. Giorgi, A. Guarcello, P. Portanova, G. Calvaruso, S. Buscemi, N. Vivona, A. Pace, Dalton Trans. 39 (2010) 9140 (https://doi.org/10.1039/C0DT00266F)

H.-L. Chan, H.-Q. Liu, B.-C. Tzeng, Y.-S. You, S.-M. Peng, M. Yang, C.-M. Che, Inorg. Chem. 41 (2002) 3161 (https://doi.org/10.1021/ic0112802)

R. Patil, S. Das, A. Stanley, L. Yadav, A. Sudhakar, A. K. Varma, PLoS One 5 (2010) 2029 (https://doi.org/10.1371/journal.pone.0012029)

P. Uma Maheswari, M. Palaniandavar, J. Inorg. Biochem. 98 (2004) 219 (http://dx.doi.org/10.1016/j.jinorgbio.2003.09.003)

H. Zhao, D. Huang, PLoS One 6 (2011) 19923 (https://doi.org/10.1371/journal.pone.0019923)

J. K. Barton, A. L. Raphael, J. Am. Chem. Soc. 106 (1984) 2466 (https://doi.org/10.1021/ja00320a058)

E. N. Zaitsev, S. C. Kowalczykowski, Nucleic Acids Res. 26 (1998) 650

M. R. Eftink, C. A. Ghiron, Anal. Biochem. 114 (1981) 199 https://doi.org/10.1016/0003-2697(81)90474-7

J. Palmucci, K. T. Mahmudov, M. F. C. Guedes da Silva, F. Marchetti, C. Pettinari, D. Petrelli, L. A. Vitali, L. Quassinti, M. Bramucci, G. Lupidi, A. J. L. Pombeiro, RSC Adv. 6 (2016) 4237 (https://doi.org/10.1039/C5RA20157H)

L. S. Lerman, J. Mol. Biol. 3 (1961) 18 https://doi.org/10.1016/S0022-2836(61)80004-1

S. Satyanarayana, J. C. Dabrowiak, J. B. Chaires, Biochemistry 32 (1993) 2573 (https://doi.org/10.1021/bi00061a015)

J. M. Kelly, A. B. Tossi, D. J. McConnell, C. OhUigin, Nucleic Acids Res. 13 (1985) 6017

Y.-J. Liu, J.-F. He, J.-H. Yao, W.-J. Mei, F.-H. Wu, L.-X. He, J. Coord. Chem. 62 (2009) 665 (https://doi.org/10.1080/00958970802266904)

X.-L. Hong, Z.-H. Liang, M.-H. Zeng, J. Coord. Chem. 64 (2011) 3792 (https://doi.org/10.1080/00958972.2011.628989)

S. Satyanarayana, J. C. Dabrowiak, J. B. Chaires, Biochemistry 31 (1992) 9319 https://doi.org/10.1021/bi00154a001

B. Atabey-Özdemir, O. Demirkiran, U. Yildiz, I. O. Tekin, B. Coban, Bulg. Chem. Commun. 49 (2017) 901

B. Coban, N. Eser, I. Babahan, Bulg. Chem. Commun. 49 (2017) 908 (http://www.bcc.bas.bg/BCC_Volumes/Volume_49_Number_4_2017/BCC-49-4-2017-4492-Coban-901-907.pdf)

B. Coban, I. O. Tekin, A. Sengul, U. Yildiz, I. Kocak, N. Sevinc, J. Biol. Inorg. Chem. 21 (2016) 163 (https://doi.org/10.1007/s00775-015-1317-8)

M. Das, B. Kumar Kundu, R. Tiwari, P. Mandal, D. Nayak, R. Ganguly, S. Mukhopadhyay, Inorg. Chim. Acta 469 (2018) 111 (https://doi.org/10.1016/j.ica.2017.09.053)

Q. Gan, C.-L. Zhang, B.-F. Wang, Y.-H. Xiong, Y.-L. Fu, Z.-W. Mao, X.-Y. Le, RSC Adv. 6 (2016) 35952 (https://doi.org/ 10.1039/C6RA01868H)

P. Shi, M. Lin, J. Zhu, Y. Zhang, Q. Jiang, J. Biochem. Mol. Toxicol. 23 (2009) 295 (https://doi.org/10.1002/jbt.20292).