Chemical and photo-induced nuclease activity of a novel minor groove DNA binder Cu(II) complex

Ufuk Yildiz, Burak Coban

Abstract


A new type of copper(II) metal complex containing 1,10-phenanthroline (phen) and 8-(difluoromethoxy)-3,4-dihydro-2H-[1,3]thiazino[3,2-a]benzimidazole (dtb) ligands was prepared and characterized. The ds-DNA interaction of the complex was studied by UV–Vis spectrophotometry, competitive fluorometric titration with ethidium bromide (EB) and 4′,6-diamidino-2-phenylindole (DAPI), viscosity measurements and agarose gel electrophoresis. The results show that the complex can bind to ds-DNA in the minor groove by displacing DAPI molecules. DNA cleavage mechanism studies revealed that hydrogen peroxide radicals are responsible for DNA oxidative cleavage.


Keywords


Cu(II)-phenanthroline; chemical nuclease activity; DNA-binding affinity; minor groove binding

References


L. Kelland, Nat. Rev. Cancer 7 (2007) 573 (https://doi.org/10.1038/nrc2167)

R. Tandon, V. Luxami, H. Kaur, N. Tandon, K. Paul, Chem. Rec. 17 (2017) 956 (https://doi.org/10.1002/tcr.201600134)

P. Yang, Q. Yang, X. Qian, J. Cui, Bioorg. Med. Chem. 13 (2005) 5909 (https://doi.org/10.1016/j.bmc.2005.07.029)

C.-C. Zeng, C. Zhang, S.-H. Lai, H. Yin, B. Tang, D. Wan, Y.-J. Liu, Inorg. Chem. Commun. 70 (2016) 210 (https://doi.org/10.1016/j.jorganchem.2015.10.008

K. Wolfgang, R. Jochen, Angew. Chem. Int. Ed. 35 (1996) 43 (https://doi.org/10.1002/anie.199600431)

C. Santini, M. Pellei, V. Gandin, M. Porchia, F. Tisato, C. Marzano, Chem. Rev. 114 (2014) 815 (https://doi.org/10.1021/cr400135x)

M. L. Low, C. W. Chan, P. Y. Ng, I. H. Ooi, M. J. Maah, S. M. Chye, K. W. Tan, S. W. Ng, C. H. Ng, J. Coord. Chem. 70 (2017) 223 (https://doi.org/10.1080/00958972.2016.1260711

D. S. Sigman, D. R. Graham, V. D'Aurora, A. M. Stern, J. Biol. Chem. 254 (1979) 12269 (http://www.jbc.org/content/254/24/12269.citation)

X.-W. Liu, J.-L. Lu, Y.-D. Chen, L. Li, D.-S. Zhang, Inorg. Chim. Acta 379 (2011) 1 (http://dx.doi.org/10.1016/j.ica.2011.08.058)

G. Cohen, H. Eisenberg, Biopolymers 8 (1969) 46 https://doi.org/10.1002/bip.1969.360080105

P. A. Sharp, B. Sugden and J. Sambrook, Biochem. 12 (1973) 3055 (https://doi.org/10.1021/bi00740a018)

E. El Ashry, Y. El Kilany, N. Nahas, A. Barakat, N. Al-Qurashi, H. Ghabbour, H.-K. Fun, Molecules 21 (2016) 12 (https://doi.org/10.3390/molecules21010012)

S. U. Rehman, T. Sarwar, M. A. Husain, H. M. Ishqi, M. Tabish, Arch. Biochem. Biophys. 576 (2015) 49 (https://doi.org/10.1016/j.abb.2015.03.024)

J. D. McGhee, P. H. von Hippel, J. Mol. Biol. 86 (1974) 469

S. Ramakrishnan, M. Palaniandavar, J. Chem. Sci. 117 (2005) 179 (https://doi.org/10.1007/BF03356114)

S. Ramakrishnan, V. Rajendiran, M. Palaniandavar, V. S. Periasamy, B. S. Srinag, H. Krishnamurthy, M. A. Akbarsha, Inorg. Chem. 48 (2009) 1309 (https://doi.org/10.1021/ic801144x)

B. Selvakumar, V. Rajendiran, P. Uma Maheswari, H. Stoeckli-Evans, M. Palaniandavar, J. Inorg. Biochem. 100 (2006) 316 (https://doi.org/10.1016/j.jinorgbio.2005.11.018)

A. Terenzi, G. Barone, A. Palumbo Piccionello, G. Giorgi, A. Guarcello, P. Portanova, G. Calvaruso, S. Buscemi, N. Vivona, A. Pace, Dalton Trans. 39 (2010) 9140 (https://doi.org/10.1039/C0DT00266F)

H.-L. Chan, H.-Q. Liu, B.-C. Tzeng, Y.-S. You, S.-M. Peng, M. Yang, C.-M. Che, Inorg. Chem. 41 (2002) 3161 (https://doi.org/10.1021/ic0112802)

R. Patil, S. Das, A. Stanley, L. Yadav, A. Sudhakar, A. K. Varma, PLoS One 5 (2010) 2029 (https://doi.org/10.1371/journal.pone.0012029)

P. Uma Maheswari, M. Palaniandavar, J. Inorg. Biochem. 98 (2004) 219 (http://dx.doi.org/10.1016/j.jinorgbio.2003.09.003)

H. Zhao, D. Huang, PLoS One 6 (2011) 19923 (https://doi.org/10.1371/journal.pone.0019923)

J. K. Barton, A. L. Raphael, J. Am. Chem. Soc. 106 (1984) 2466 (https://doi.org/10.1021/ja00320a058)

E. N. Zaitsev, S. C. Kowalczykowski, Nucleic Acids Res. 26 (1998) 650

M. R. Eftink, C. A. Ghiron, Anal. Biochem. 114 (1981) 199 https://doi.org/10.1016/0003-2697(81)90474-7

J. Palmucci, K. T. Mahmudov, M. F. C. Guedes da Silva, F. Marchetti, C. Pettinari, D. Petrelli, L. A. Vitali, L. Quassinti, M. Bramucci, G. Lupidi, A. J. L. Pombeiro, RSC Adv. 6 (2016) 4237 (https://doi.org/10.1039/C5RA20157H)

L. S. Lerman, J. Mol. Biol. 3 (1961) 18 https://doi.org/10.1016/S0022-2836(61)80004-1

S. Satyanarayana, J. C. Dabrowiak, J. B. Chaires, Biochemistry 32 (1993) 2573 (https://doi.org/10.1021/bi00061a015)

J. M. Kelly, A. B. Tossi, D. J. McConnell, C. OhUigin, Nucleic Acids Res. 13 (1985) 6017

Y.-J. Liu, J.-F. He, J.-H. Yao, W.-J. Mei, F.-H. Wu, L.-X. He, J. Coord. Chem. 62 (2009) 665 (https://doi.org/10.1080/00958970802266904)

X.-L. Hong, Z.-H. Liang, M.-H. Zeng, J. Coord. Chem. 64 (2011) 3792 (https://doi.org/10.1080/00958972.2011.628989)

S. Satyanarayana, J. C. Dabrowiak, J. B. Chaires, Biochemistry 31 (1992) 9319 https://doi.org/10.1021/bi00154a001

B. Atabey-Özdemir, O. Demirkiran, U. Yildiz, I. O. Tekin, B. Coban, Bulg. Chem. Commun. 49 (2017) 901

B. Coban, N. Eser, I. Babahan, Bulg. Chem. Commun. 49 (2017) 908 (http://www.bcc.bas.bg/BCC_Volumes/Volume_49_Number_4_2017/BCC-49-4-2017-4492-Coban-901-907.pdf)

B. Coban, I. O. Tekin, A. Sengul, U. Yildiz, I. Kocak, N. Sevinc, J. Biol. Inorg. Chem. 21 (2016) 163 (https://doi.org/10.1007/s00775-015-1317-8)

M. Das, B. Kumar Kundu, R. Tiwari, P. Mandal, D. Nayak, R. Ganguly, S. Mukhopadhyay, Inorg. Chim. Acta 469 (2018) 111 (https://doi.org/10.1016/j.ica.2017.09.053)

Q. Gan, C.-L. Zhang, B.-F. Wang, Y.-H. Xiong, Y.-L. Fu, Z.-W. Mao, X.-Y. Le, RSC Adv. 6 (2016) 35952 (https://doi.org/ 10.1039/C6RA01868H)

P. Shi, M. Lin, J. Zhu, Y. Zhang, Q. Jiang, J. Biochem. Mol. Toxicol. 23 (2009) 295 (https://doi.org/10.1002/jbt.20292).




DOI: https://doi.org/10.2298/JSC180802102Y

Copyright (c) 2018 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)