Application of the redox system of Nocardia corallina B-276 in the enantioselective biotransformation of ketones and alcohols

Norberto Manjarrez Alvarez, Herminia Inés Pérez Méndez, Aída Solís Oba, Lucia Ortega Cabello, Maria Teresa Lara Carvajal, Omar Esteban Valencia Ledezma, Rubria Marlen Martìnez-Casares

Abstract


The aim of this research was to evaluate the redox system of Nocardia corallina B-276 in the biotransformation of 1-phenyl-1-propanone (1a), 2-hydro­xy-1-phenylethanone (2a) and methyl (2-chlorophenyl)(oxo)acetate (3a) into 1‑phenylpropan-1-ol (1b), 1-phenyl-1,2-ethanediol (2b) and methyl (2-chloro­phenyl)(hydroxy)acetate (3b). The biomass of N. corallina was obtained in a liquid medium with an initial pH of 8.50, but the pH changed during the 96 h of the culture media, the final pH was between 4.74 and 7.62. The N. corallina biomass biocatalyzed the enantioselective reduction of 1a, 2a and 3a to the corresponding alcohols. Whereas, during the process of oxidation of the rac-alcohols 1b, 2b and 3b, 1b was oxidized in enantioselective way, the oxidation of 2b was not selective, but 3b was biotransformed mainly to (R)-3b. These results are indicative that N. corallina produced reductases and oxidases, where the biocatalytic activity was influenced by the final pH of the culture media, reaction time and structure of the substrate.


Keywords


actinomycetes; oxidation-reduction; deracemization; enantioselectivity; pH influence

Full Text:

PDF (2,898 kB)

References


Y. Liu, S.-J. Han, W.-B. Liu, B. M. Stoltz, Acc. Chem. Res. 48 (2015) 740 (https://doi.org/10.1021/ar5004658)

A. J. J. Straathof, S. Panke, A. Schmid, Curr. Opin. Biotechnol. 13 (2002) 548 (https://doi.org/10.1016/S0958-1669(02)00360-9)

T. Ishige, K. Honda, S. Shimizu, Curr. Opin. Chem. Biol. 9 (2005) 174 (https://doi.org/10.1016/j.cbpa.2005.02.001)

FDA: Investigational New Drug Application (2018)

A. Calcaterra, I. D’Acquarica, J. Pharmaceut. Biomed. 147 (2018) 323 (https://doi.org/10.1016/j.jpba.2017.07.008)

W. Kroutil, H. Mang, K. Edegger, K. Faber, Curr. Opin. Chem. Biol. 8 (2004) 120 (https://doi.org/10.1016/j.cbpa.2004.02.005)

J. Magano, J. R. Dunetz, Org. Process Res. Dev. 16 (2012) 1156 (https://doi.org/10.1021/op2003826)

R. M. Pastor, J. D. Burch, S. Magnuson, D. F. Ortwine, Y. Chen, K. De la Torre, X. Ding., C. Eigenbrot, A. Johnson, M. Liimatta., Y. Liu, S. Shia, X. Wang, L. C. Wu, Z. Pei, Bioorg. Med. Chem. Lett. 24 (2014) 2448 (https://doi.org/10.1016/j.bmcl.2014.04.023)

S. Roesner, D. J. Blair, V. K. Aggarwal, Chem. Sci. 6 (2015) 3718 (https://doi.org/10.1039/C4SC03901G)

R. K. Pandey, R. A. Fernandes, P. Kumar, Tetrahedron Lett. 43 (2002) 4425 (https://doi.org/10.1016/S0040-4039(02)00842-0)

J. Shan, B. Zhang, Y. Zhu, B. Jiao, W. Zheng, X. Qi, Y. Gong, F. Yuan, F. Lv, H. Sun, J. Med. Chem. 55 (2012) 3342 (https://doi.org/10.1021/jm300038c)

Y. Ni, J. Pan, H-M. Ma, C-X. Li, J. Zhang, G-W. Zheng, J-H. Xu, Tetrahedron Lett. 53 (2012) 4715 (https://doi.org/10.1016/j.tetlet.2012.06.097)

M. Ramírez, H. I. Pérez, N. Manjarrez, A. Solís, H. Luna, J. Cassani, Electron. J. Biotechnol. 11 (2008) 1 (http://dx.doi.org/10.4067/S0717-34582008000400002)

H. I. Pérez, H. Luna, L. A. Maldonado, H. Sandoval, N. Manjarrez, A. Solís, R. Sánchez, Biotechnol. Lett. 20 (1998) 77 (https://doi.org/10.1023/A:1005343516888)

N. Manjarrez, H. I. Pérez, A. Solís, H. Luna, R. Liévano, M. Ramírez, J. Braz. Chem. Soc. 18 (2007) 709 (http://dx.doi.org/10.1590/S0103-50532007000400007)

H. I. Pérez, H. Luna, N. Manjarrez, A. Solís, Tetrahedron: Asymmetry 12 (2001) 1709 (https://doi.org/10.1016/S0957-4166(01)00307-X)

H. I. Pérez, H. Luna, N. Manjarrez, A. Solís, Biotechnol. Lett. 23 (2001) 1467 (https://doi.org/10.1023/A:1011681329808)

M. Jeong, Y. M. Lee, S. H. Hong, S. Y. Park, I. Yoo, M. J. Han, Biotechnol. Lett. 32 (2010) 1529 (https://doi.org/10.1007/s10529-010-0396-4)

H. I. Pérez, N. Manjarrez, H. Luna, A. Solís, C. Ramírez, J. Braz. Chem. Soc. 16 (2005) 1150 (http://dx.doi.org/10.1590/S0103-50532005000700010)

R. M. Silverstein, F. X. Webster, D. J. Kiemle, Spectrometric identification of organic compounds, John Wiley & Sons, New York, USA, 2005

C. Pouchert, J. Behnke, The Aldrich library of 13C and 1H FT NMR spectra, Aldrich Chemical Comp, USA, 1993.

J. Escorihuela Fuentes, Catalizadores enantioselectivos soportados y homogéneos derivados de aminoácidos, Universitat Jaume, Spain, 2009

L. Wang, S. Nakamura, Y. Ito, T. Toru, Tetrahedron: Asymmetry 15 (2004) 3059 (https://doi.org/10.1016/j.tetasy.2004.08.010)

H. A. Nel, R. Bauer, E. J. Vandamme, L. M. T. Dicks, J. Appl. Microbiol. 91 (2001) 1131 (https://doi.org/10.1046/j.1365-2672.2001.01486.x)

I-C. Liu, L-M. Whang, W-J. Ren, P-Y. Lin, Int. J., Hydrogen Energ. 36 (2011) 439 (https://doi.org/10.1016/j.ijhydene.2010.10.045)

K. Petrov, P. Petrova, Appl. Microbiol. Biotechnol. 87 (2010) 943 (https://doi.org/10.1007/s00253-010-2545-z)

K. Dhakar, R. Kooliyottil, A. Joshi, A. Pandey, Indian J. Biotechnol. 14 (2015) 81 (http://hdl.handle.net/123456789/31478)

H. Bisswanger, Perspect. Sci. 1 (2014) 41 (https://doi.org/10.1016/j.pisc.2014.02.005)

M. Chaplin, C. Bucke, Effect of pH and ionic strength in Enzyme technology, Cambridge University Press, United Kingdom, 2014

W. Kroutil, H. Mang, K. Edegger, K. Faber, Adv. Synth. Catal. 346 (2004) 125 (https://doi.org/10.1002/adsc.200303177)

G. G. Hammes, Protein structure and dynamics, in Enzyme catalysis and regulation, Academic Press Inc, United States of America 1982, p. 2.

J. C. Védrine, Res Chem Intermed 41 (2015) 9387-9423 (https://doi.org/10.1007/s11164-015-1982-9)

X. Zhou, R. Zhang, Y. Xu, H. Liang, J. Jiang, R. Xiao, Process Biochem 50(11) (2015) 1807-1813 (https://doi.org/10.1016/j.procbio.2015.08.002)

R. Z. Zhang, Y. Xu, R. Xiao, S. S. Wang, B. T. Zhang, Process Biochem. 46(3) (2011) 2011709-713 (https://doi.org/10.1016/j.procbio.2010.11.016)

A. Liese, M. Karutz, J. Kamphuis, C. Wandrey, U. Kragl, Biotechnology and Bioengineering 51(5) (1996) 544 –550. (https://doi.org/10.1002/(SICI)1097-0290(19960905)51:5<544::AID-BIT6>3.0.CO;2-C)

Li Y., Zhang R., Xu Y., Xiao R., Wang L., Zhou X., Liang H., Jiang J. 2016. Process Biochem; 51(9): 1175-1182. https://doi.org/10.1016/j.procbio.2016.05.026

H. Bisswanger, pH and temperature dependence of enzymes, in Enzyme kinetics 3rd ed. Wiley-VCH Verlag GmbH & Co. Germany 2017, pp 145-147. (https://doi.org/10.1002/9783527806461.ch6)

H. S. Saluja, M. O. F. Khan, Medicinal Chemistry for Pharmacy Students 1 (2018) 76-108 https://doi.org/10.2174/9781681086873118010006

S. Sudhakara, A. Chadha, Org. Biomol. Chem. 15 (2017) 4165 (https://doi.org/10.1039/c7ob00340d)

L-J. Wang, C-X. Li, Y. Ni, J. Zhang, X. Liu, J-H. Xu, Bioresource Technol. 102 (2011) 7023 (https://doi.org/10.1016/j.biortech.2011.04.046)

C. Rodríguez, W. Borzęcka, J. H. Sattler, W. Kroutil, I. Lavandera, V. Gotor, Org. Biomol. Chem. 12 (2014) 673 (https://doi.org/10.1039/c3ob42057d)




DOI: https://doi.org/10.2298/JSC180806089M

Copyright (c) 2019 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)