Application of the redox system of Nocardia corallina B-276 in the enantioselective biotransformation of ketones and alcohols

Norberto Manjarrez Alvarez, Herminia Inés Pérez Méndez, Aída Solís Oba, Lucia Ortega Cabello, Maria Teresa Lara Carvajal, Omar Esteban Valencia Ledezma, Rubria Marlen Martìnez-Casares

Abstract


The aim of this research was to evaluate the redox system of Noc­ardia corallina B-276 in the biotransformation of 1-phenyl-1-propanone (1a), 2-hydro­xy-1-phenylethanone (2a) and methyl (2-chlorophenyl)(oxo)acetate (3a) into 1-phenylpropan-1-ol (1b), 1-phenyl-1,2-ethanediol (2b) and methyl (2-chloro­phenyl)(hydroxy)acetate (3b). The biomass of N. corallina was obtained in a liquid medium with an initial pH of 8.50, but the pH changed during the 96 h of the culture media, the final pH was between 4.74 and 7.62. The N. corallina biomass biocatalyzed the enantioselective reduction of 1a3a to the corresponding alcohols. Whereas, during the process of oxidation of the rac-alcohols 1b–3b, 1b was oxidized in enantioselective way, the oxidation of 2b was not selective, but 3b was biotransformed mainly to (R)-3b. These results are indicative that N. corallina produced reductases and oxidases, whereby the biocatalytic activity was influenced by the final pH of the culture media, the reaction time and structure of the substrate.


Keywords


actinomycetes; oxidation–reduction; enantioselectivity; pH influence

References


Y. Liu, S.-J. Han, W.-B. Liu, B. M. Stoltz, Acc. Chem. Res. 48 (2015) 740 (https://doi.org/10.1021/ar5004658)

A. J. J. Straathof, S. Panke, A. Schmid, Curr. Opin. Biotechnol. 13 (2002) 548 (https://doi.org/10.1016/S0958-1669(02)00360-9)

T. Ishige, K. Honda, S. Shimizu, Curr. Opin. Chem. Biol. 9 (2005) 174 (https://doi.org/10.1016/j.cbpa.2005.02.001)

FDA, Investigational New Drug Application (2018)

A. Calcaterra, I. D’Acquarica, J. Pharmaceut. Biomed. 147 (2018) 323 (https://doi.org/10.1016/j.jpba.2017.07.008)

W. Kroutil, H. Mang, K. Edegger, K. Faber, Curr. Opin. Chem. Biol. 8 (2004) 120 (https://doi.org/10.1016/j.cbpa.2004.02.005)

J. Magano, J. R. Dunetz, Org. Process Res. Dev. 16 (2012) 1156 (https://doi.org/10.1021/op2003826)

R. M. Pastor, J. D. Burch, S. Magnuson, D. F. Ortwine, Y. Chen, K. De la Torre, X. Ding., C. Eigenbrot, A. Johnson, M. Liimatta, Y. Liu, S. Shia, X. Wang, L. C. Wu, Z. Pei, Bioorg. Med. Chem. Lett. 24 (2014) 2448 (https://doi.org/10.1016/j.bmcl.2014.04.023)

S. Roesner, D. J. Blair, V. K. Aggarwal, Chem. Sci. 6 (2015) 3718 (https://doi.org/10.1039/C4SC03901G)

R. K. Pandey, R. A. Fernandes, P. Kumar, Tetrahedron Lett. 43 (2002) 4425 (https://doi.org/10.1016/S0040-4039(02)00842-0)

J. Shan, B. Zhang, Y. Zhu, B. Jiao, W. Zheng, X. Qi, Y. Gong, F. Yuan, F. Lv, H. Sun, J. Med. Chem. 55 (2012) 3342 (https://doi.org/10.1021/jm300038c)

Y. Ni, J. Pan, H.-M. Ma, C.-X. Li, J. Zhang, G.-W. Zheng, J.-H. Xu, Tetrahedron Lett. 53 (2012) 4715 (https://doi.org/10.1016/j.tetlet.2012.06.097)

M. Ramírez, H. I. Pérez, N. Manjarrez, A. Solís, H. Luna, J. Cassani, Electron. J. Biotechnol. 11 (2008) 1 (http://dx.doi.org/10.4067/S0717-34582008000400002)

H. I. Pérez, H. Luna, L. A. Maldonado, H. Sandoval, N. Manjarrez, A. Solís, R. Sánchez, Biotechnol. Lett. 20 (1998) 77 (https://doi.org/10.1023/A:1005343516888)

N. Manjarrez, H. I. Pérez, A. Solís, H. Luna, R. Liévano, M. Ramírez, J. Braz. Chem. Soc. 18 (2007) 709 (http://dx.doi.org/10.1590/S0103-50532007000400007)

H. I. Pérez, H. Luna, N. Manjarrez, A. Solís, Tetrahedron: Asymm. 12 (2001) 1709 (https://doi.org/10.1016/S0957-4166(01)00307-X)

H. I. Pérez, H. Luna, N. Manjarrez, A. Solís, Biotechnol. Lett. 23 (2001) 1467 (https://doi.org/10.1023/A:1011681329808)

M. Jeong, Y. M. Lee, S. H. Hong, S. Y. Park, I. Yoo, M. J. Han, Biotechnol. Lett. 32 (2010) 1529 (https://doi.org/10.1007/s10529-010-0396-4)

H. I. Pérez, N. Manjarrez, H. Luna, A. Solís, C. Ramírez, J. Braz. Chem. Soc. 16 (2005) 1150 (http://dx.doi.org/10.1590/S0103-50532005000700010)

R. M. Silverstein, F. X. Webster, D. J. Kiemle, Spectrometric identification of organic compounds, John Wiley & Sons, New York, 2005

C. Pouchert, J. Behnke, The Aldrich Library of 13C- and 1H-FTNMR spectra, Aldrich Chemical Comp., 1993

J. Escorihuela Fuentes, Catalizadores enantioselectivos soportados y homogéneos derivados de aminoácidos, Universitat Jaume, Castelló de la Plana, Spain, 2009

L. Wang, S. Nakamura, Y. Ito, T. Toru, Tetrahedron: Asymm. 15 (2004) 3059 (https://doi.org/10.1016/j.tetasy.2004.08.010)

H. A. Nel, R. Bauer, E. J. Vandamme, L. M. T. Dicks, J. Appl. Microbiol. 91 (2001) 1131 (https://doi.org/10.1046/j.1365-2672.2001.01486.x)

I.-C. Liu, L.-M. Whang, W.-J. Ren, P.-Y. Lin, Int. J. Hydrogen Energy 36 (2011) 439 (https://doi.org/10.1016/j.ijhydene.2010.10.045)

K. Petrov, P. Petrova, Appl. Microbiol. Biotechnol. 87 (2010) 943 (https://doi.org/10.1007/s00253-010-2545-z)

K. Dhakar, R. Kooliyottil, A. Joshi, A. Pandey, Indian J. Biotechnol. 14 (2015) 81 (http://hdl.handle.net/123456789/31478)

H. Bisswanger, Perspect. Sci. 1 (2014) 41 (https://doi.org/10.1016/j.pisc.2014.02.005)

M. Chaplin, C. Bucke, Effect of pH and Ionic Strength in Enzyme Technology, Cambridge University Press, Cambridge, 2014

W. Kroutil, H. Mang, K. Edegger, K. Faber, Adv. Synth. Catal. 346 (2004) 125 (https://doi.org/10.1002/adsc.200303177)

G. G. Hammes, Protein Structure and Dynamics, in Enzyme Catalysis and Regulation, Academic Press Inc., Cambridge, MA, 1982, p. 2.

J. C. Védrine, Res. Chem. Intermed. 41 (2015) 9387 (https://doi.org/10.1007/s11164-015-1982-9)

X. Zhou, R. Zhang, Y. Xu, H. Liang, J. Jiang, R. Xiao, Process Biochem. 50(11) (2015) 1807 (https://doi.org/10.1016/j.procbio.2015.08.002)

R. Z. Zhang, Y. Xu, R. Xiao, S. S. Wang, B. T. Zhang, Process Biochem. 46(3) (2011) 709 (https://doi.org/10.1016/j.procbio.2010.11.016)

A. Liese, M. Karutz, J. Kamphuis, C. Wandrey, U. Kragl, Biotechnol. Bioeng. 51 (1996) 544 (https://doi.org/10.1002/(SICI)1097-0290(19960905)51:5<544::AID-BIT6>3.0.CO;2-C)

Y. Li, R. Zhang, Y. Xu, R. Xiao, L. Wang, X. Zhou, H. Liang, J. Jiang, Process Biochem. 51 (2016) 1175-1182. https://doi.org/10.1016/j.procbio.2016.05.026

H. Bisswanger, pH and Temperature Dependence of Enzymes, in Enzyme Kinetics, 3rd ed., Wiley–VCH Verlag, Berlin, Germany, 2017, pp. 145–147 (https://doi.org/10.1002/9783527806461.ch6)

H. S. Saluja, M. O. F. Khan, Medicinal Chemistry for Pharmacy Students, Vol. 1, Bentham Science Publishers, Sharjah, 2018, pp. 76–108 https://doi.org/10.2174/9781681086873118010006

S. Sudhakara, A. Chadha, Org. Biomol. Chem. 15 (2017) 4165 (https://doi.org/10.1039/c7ob00340d)

L.-J. Wang, C.-X. Li, Y. Ni, J. Zhang, X. Liu, J.-H. Xu, Biores. Technol. 102 (2011) 7023 (https://doi.org/10.1016/j.biortech.2011.04.046)

C. Rodríguez, W. Borzęcka, J. H. Sattler, W. Kroutil, I. Lavandera, V. Gotor, Org. Biomol. Chem. 12 (2014) 673 (https://doi.org/10.1039/c3ob42057d).




DOI: https://doi.org/10.2298/JSC180806089M

Copyright (c) 2019 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 1.097
5 Year Impact Factor 1.023
(
138 of 177 journals)