Electrochemical oxidation of sulfamethoxazole using Ti/SnO2-Sb/Co-PbO2 electrode through ANN-PSO

Jiteng Wan, Chunji Jin, Banghai Liu, Zonglian She, Mengchun Gao, Zhengyang Wang


Even in a trace amount, the presence of antibiotics in aqueous solution has raised more and more attention. Accordingly, appropriate technologies are needed to efficiently remove these compounds from aqueous environments. In this study, we examined the electrochemical oxidation (EO) of sulfamethoxazole (SMX) on a Co modified PbO2 electrode. The process of EO of SMX in aqueous solution followed the pseudo-first-order kinetics pattern, and the removal efficiency of SMX reached the maximum value of 95.1% within 60 min. The effects of major factors on SMX kinetics were studied in detail by single-factor experiments, namely current density (1-20 mA cm-2), solution pH value (2-10), initial concen­tra­tion of SMX (10-500 mg L-1) and concentration of electrolytes (0.05‑0.4 mol L-1). An artificial neural network (ANN) model was used to simulate this EO process. Based on the obtained model, particle swarm optimization (PSO) was used to optimize the operating parameters. The maximum removal efficiency of SMX was obtained at the optimized conditions (e.g., current density of 12.37 mA cm-2, initial pH value of 4.78, initial SMX concentration of 74.45 mg L-1, electrolyte concen­tration of 0.24 mol L-1 and electrolysis time of 51.49 min). The validation results indicated that this method can ideally be used to optimize the related parameters and predict the anticipated results with acceptable accuracy.


Sulfamethoxazole; electrochemical oxidation; artificial neural net¬works; particle swarm optimization

Full Text:

PDF (1,702 kB)


K. K. Brandt, A. Amézquita, T. Backhaus, A. Boxall, A. Coors, T. Heberer, J. R. Lawrence, J. Lazorchak, J. Schönfeld, J. R. Snape, Y. G. Zhu, E. Topp, Environ. Int. 85 (2015) 189–205. (https://dx.doi.org/10.1016/j.envint.2015.09.013).

M. I. Vasquez, A. Lambrianides, M. Schneider, K. Kümmerer, D. Fatta-Kassinos, J. Hazard. Mater. 279 (2014) 169–189 (https://dx.doi.org/10.1016/j.jhazmat.2014.06.069).

T. J. Runnalls, L. Margiotta-Casaluci, S. Kugathas, J. P. Sumpter, Hum. Ecol. Risk Assess. 16 (2010) 1318–1338. (https://dx.doi.org/10.1080/10807039.2010.526503).

A. Grossberger, Y. Hadar, T. Borch, B. Chefetz, Environ. Pollut. 185 (2014) 168–177. (https://dx.doi.org/10.1016/j.envpol.2013.10.038).

A. Mirzaei, L. Yerushalmi, Z. Chen, F. Haghighat, J. Guo, Water Res. 132 (2018) 241–251. (https://dx.doi.org/10.1016/j.watres.2018.01.016).

F. J. Beltrán, A. Aguinaco, J. F. García-Araya, A. Oropesa, Water Res. 42 (2008) 3799–3808. (https://dx.doi.org/10.1016/j.watres.2008.07.019).

S. Hussain, J. R. Steter, S. Gul, A. J. Motheo, J. Environ. Manage. 201 (2017) 153–162. (https://dx.doi.org/10.1016/j.jenvman.2017.06.043).

J. Benner, D. E. Helbling, H. P. E. Kohler, J. Wittebol, E. Kaiser, C. Prasse, T. A. Ternes, C. N. Albers, J. Aamand, B. Horemans, D. Springael, E. Walravens, N. Boon, Water Res. 47 (2013) 5955–5976. (https://dx.doi.org/10.1016/j.watres.2013.07.015).

P. A. Segura, M. François, C. Gagnon, S. Sauvé, Environ. Health Perspect. 117 (2009) 675–684. (https://dx.doi.org/10.1289/ehp.11776).

A. Nikolaou, S. Meric, D. Fatta, Anal. Bioanal. Chem. 387 (2007) 1225–1234. (https://dx.doi.org/10.1007/s00216-006-1035-8).

M. N. Abellán, B. Bayarri, J. Giménez, J. Costa, Appl. Catal. B Environ. 74 (2007) 233–241. (https://dx.doi.org/10.1016/j.apcatb.2007.02.017).

N. Klidi, D. Clematis, M. Delucchi, A. Gadri, S. Ammar, M. Panizza, J. Electroanal. Chem. 815 (2018) 16–23. (https://dx.doi.org/10.1016/j.jelechem.2018.02.063).

J. R. Steter, R. S. Rocha, D. Dionísio, M. R. V Lanza, A. J. Motheo, Electrochim. Acta 117 (2014) 127–133. (https://dx.doi.org/10.1016/j.electacta.2013.11.118).

C. M. Dominguez, N. Oturan, A. Romero, A. Santos, M. A. Oturan, Environ. Sci. Pollut. Res. 1988 (2018) 1–10. (https://dx.doi.org/10.1007/s11356-018-1425-4).

S. Song, J. Fan, Z. He, L. Zhan, Z. Liu, J. Chen, X. Xu, Electrochim. Acta 55 (2010) 3606–3613. (https://dx.doi.org/10.1016/j.electacta.2010.01.101).

C. Salazar, C. Ridruejo, E. Brillas, J. Yáñez, H. D. Mansilla, I. Sirés, Appl. Catal. B Environ. 203 (2017) 189–198. (https://dx.doi.org/10.1016/j.apcatb.2016.10.026).

H. Särkkä, A. Bhatnagar, M. Sillanpää, J. Electroanal. Chem. 754 (2015) 46–56. (https://dx.doi.org/10.1016/j.jelechem.2015.06.016).

K. Gurung, M. C. Ncibi, M. Shestakova, M. Sillanpää, Appl. Catal. B Environ. 221 (2018) 329–338. (https://dx.doi.org/10.1016/j.apcatb.2017.09.017).

R. Xie, X. Meng, P. Sun, J. Niu, W. Jiang, L. Bottomley, D. Li, Y. Chen, J. Crittenden, Appl. Catal. B Environ. 203 (2017) 515–525. (https://dx.doi.org/10.1016/j.apcatb.2016.10.057).

J. Wang, D. Zhi, H. Zhou, X. He, D. Zhang, Water Res. 137 (2018) 324–334. (https://dx.doi.org/10.1016/j.watres.2018.03.030).

J. F. Pérez, J. Llanos, C. Sáez, C. López, P. Cañizares, M. A. Rodrigo, Electrochem. Commun. 82 (2017) 85–88. (https://dx.doi.org/10.1016/j.elecom.2017.07.026).

H. Lin, J. Niu, J. Xu, Y. Li, Y. Pan, Electrochim. Acta 97 (2013) 167–174. (https://dx.doi.org/10.1016/j.electacta.2013.03.019).

K. P. De Amorim, L. L. Romualdo, L. S. Andrade, Sep. Purif. Technol. 120 (2013) 319–327. (https://dx.doi.org/10.1016/j.seppur.2013.10.010).

J. Radjenovic, D. L. Sedlak, Environ. Sci. Technol. 49 (2015) 11292–11302. (https://dx.doi.org/10.1021/acs.est.5b02414).

M. Fan, J. Hu, R. Cao, K. Xiong, X. Wei, Sci. Rep. 7 (2017) 1–14. (https://dx.doi.org/10.1038/s41598-017-18223-y).

P. Assefi, M. Ghaedi, A. Ansari, M. H. Habibi, M. S. Momeni, J. Ind. Eng. Chem. 20 (2014) 2905–2913. (https://dx.doi.org/10.1016/j.jiec.2013.11.027).

S. Mandal, S. S. Mahapatra, M. K. Sahu, R. K. Patel, Process Saf. Environ. Prot. 93 (2015) 249–264. (https://dx.doi.org/10.1016/j.psep.2014.02.016).

E. S. Elmolla, M. Chaudhuri, M. M. Eltoukhy, J. Hazard. Mater. 179 (2010) 127–134. (https://dx.doi.org/10.1016/j.jhazmat.2010.02.068).

Z. H. Che, Comput. Ind. Eng. 58 (2010) 625–637. (https://dx.doi.org/10.1016/j.cie.2010.01.004).

R. Poli, J. Artif. Evol. Appl. 2008 (2008) 1–10. (https://dx.doi.org/10.1155/2008/685175).

A. Khare, S. Rangnekar, Appl. Soft Comput. J. 13 (2013) 2997–3006. (https://dx.doi.org/10.1016/j.asoc.2012.11.033).

Q. Dai, Y. Xia, C. Sun, M. Weng, J. Chen, J. Wang, J. Chen, Chem. Eng. J. 245 (2014) 359–366. (https://dx.doi.org/10.1016/j.cej.2013.08.036).

Q. Dai, H. Shen, Y. Xia, F. Chen, J. Wang, J. Chen, Sep. Purif. Technol. 104 (2013) 9–16. (https://dx.doi.org/10.1016/j.seppur.2012.10.043).

S. Aquino Neto, A. R. de Andrade, Electrochim. Acta 54 (2009) 2039–2045. (https://dx.doi.org/10.1016/j.electacta.2008.07.019).

O. Shmychkova, T. Luk’yanenko, A. Yakubenko, R. Amadelli, A. Velichenko, Appl. Catal. B Environ. 162 (2015) 346–351. (https://dx.doi.org/10.1016/j.apcatb.2014.07.011).

A. S. Fajardo, H. F. Seca, R. C. Martins, V. N. Corceiro, I. F. Freitas, M. E. Quinta-Ferreira, R. M. Quinta-Ferreira, J. Electroanal. Chem. 785 (2017) 180–189. (https://dx.doi.org/10.1016/j.jelechem.2016.12.033).

Q. Dai, J. Zhou, M. Weng, X. Luo, D. Feng, J. Chen, Sep. Purif. Technol. 166 (2016) 109–116. (https://dx.doi.org/10.1016/j.seppur.2016.04.028).

B. Liu, C. Jin, J. Wan, P. Li, H. Yan, J. Serb. Chem. Soc. 83 (2018) 379–390. (https://dx.doi.org/10.2298/JSC170721101L).

DOI: https://doi.org/10.2298/JSC180810025W

Copyright (c) 2019 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.797 (139 of 171 journals)
5 Year Impact Factor 0.923 (134 of 171 journals)