Water glass derived catalyst for the synthesis of glycerol carbonate via the transesterification reaction between glycerol and dimethyl carbonate

Authors

  • Lanlan Xu School of Science, Shenyang University of Technology, Shenyang 110870, Liaoning
  • Song Wang School of Science, Shenyang University of Technology, Shenyang 110870, Liaoning
  • Patrick U. Okoye School of Science, Shenyang University of Technology, Shenyang 110870, Liaoning
  • Jianye Wang School of Science, Shenyang University of Technology, Shenyang 110870, Liaoning
  • Sanxi Li School of Science, Shenyang University of Technology, Shenyang 110870, Liaoning
  • Linnan Zhang School of Science, Shenyang University of Technology, Shenyang 110870, Liaoning
  • Ailing Zhang School of Science, Shenyang University of Technology, Shenyang 110870, Liaoning
  • Tao Tang School of Science, Shenyang University of Technology, Shenyang 110870, Liaoning

DOI:

https://doi.org/10.2298/JSC180828002X

Keywords:

glycerol carbonate, glycerol, transesterification, water glass, catalyst

Abstract

Water glasses with different modulus (mole ratio of SiO2 to Na2O) were applied as a raw material to prepare five solid base catalysts for the syn­thesis of glycerol carbonate (GC) by the transesterification reaction between glycerol and dimethyl carbonate (DMC). The structure and properties of the five water glass-derived catalysts were investigated by XRD, FT-IR, FESEM, BET and acid–base titration methods. The catalysts with relatively low mod­ulus, including 1.0, 1.5 and 2.0, presented good catalytic abilities, among which the catalyst derived from water glass with 2.0 modulus (WG-2.0) was chosen as the optimal catalyst in the synthesis of GC. This was because WG-2.0 showed the highest BET surface area, relatively high total basicity, and needed a less amount of NaOH during the preparation process. In the opti­mization experiments, this catalyst exhibited good catalytic ability with the glycerol conversion of 96.3 % and GC yield of 94.1 % under the condition of glycerol to DMC mole ratio of 1:4, WG-2.0 amount of 4 wt. %, reaction tem­perature of 348 K and reaction time of 90 min. Furthermore, the reusability experiment of WG-2.0 was also conducted and the results indicated that WG-2.0 could be reused five times without significant reduction in its catalytic ability.

References

Z. J. Predojevic, B. D. Škrbic, J. Serb. Chem. Soc. 74 (2009) 993 (https://dx.doi.org/10.2298/JSC0909993P)

V.C. Eze, A.P. Harvey, Chem. Eng. J. 347 (2018) 41 (https://dx.doi.org/10.1016/j.cej.2018.04.078)

M. Mantovani, D. Mandelli, M. Gonçalves, W. A. Carvalho, Chem. Eng. J.561 (2018) 1 (https://dx.doi.org/10.1016/j.cej.2018.05.059)

M. Aghbashlo, M. Tabatabaei, H. Rastegari, H. S. Ghaziaskar, T. R. Shojaei, Renew. Energ. 126 (2018) 242 (https://dx.doi.org/10.1016/j.renene.2018.03.047)

P. Devi, U. Das, A. K. Dalai, Chem. Eng. J. 346 (2018) 477 (https://dx.doi.org/10.1016/j.cej.2018.04.030)

A. Devarajan, S. Thiripuranthagan, R. Radhakrishnan, S. Kumaravel, J. Nanosci. Nanotechnol. 18 (2018) 4588 (https://dx.doi.org/10.1166/jnn.2018.15265)

, P. U. Okoye,, S. Wang,, L. Xu,, S. X. Li,, J. Y. Wang,, L. N. Zhang, Energy. Conv. Manage. 179 (2019) 192 (https://doi.org/10.1016/j.enconman.2018.10.013)

Y. F. Wu, X. H. Song, J. H. Zhang, S. Li, X. H. Yang, H. Z. Wang, R. P. Wei, L. J. Gao, J. Zhang, G. M. Xiao, J. Taiwan Inst. Chem. E. 87 (2018) 131 (https://dx.doi.org/10.1016/j.jtice.2018.03.023)

X. H. Song, Y. F. Wu, F. F. Cai, D. H. Pan, G. M. Xiao, Appl. Catal. A: Gen. 532 (2017) 77 (http://dx.doi.org/10.1016/j.apcata.2016.12.019)

M. J. Climent, A. Corma, P. D. Frutos, S. Iborra, M. Noy, A. Velty, P. Concepción, J. Catal. 269 (2010) 140 (http://dx.doi.org/10.1016/j.jcat.2009.11.001)

P. U. Okoye, A. Z. Abdullah, B. H. Hameed, Energy Conv. Manage. 133 (2016) 477 (http://dx.doi.org/10.1016/j.enconman.2016.10.067)

S. Wang, L. L. Xu, P. U. Okoye, S. X. Li, C. C. Tian, Energy Conv. Manage. 164 (2018) 543 (http://dx.doi.org/10.1016/j.enconman.2018.03.021)

M. Malyaadri, K. Jagadeeswaraiah, P. S. S. Prasad, N Lingaiah, Appl. Catal. A: Gen. 401 (2011) 153 (http://dx.doi.org/10.1016/j.apcata.2011.05.011)

J. R. Ochoa-Go´mez, O. Go´mez-Jime´nez-Aberasturi, B. Maestro-Madurga, A. Pesquera-Rodrı ´guez, C. Ramı ´rez-Lo´pez, L. Lorenzo-Ibarreta, J. Torrecilla-Soria, M. C.Villara´n-Velasco, Appl. Catal. A: Gen. 366 (2009) 315

(http://dx.doi.org/10.1016/j.apcata.2009.07.020)

S. Sandesh, G. V. Shanbhag, A. B. Halgeri, Catal. Lett. 143 (2013) 1226 (http://dx.doi.org/10.1007/s10562-013-1043-1)

M. Du, Q. Li, W. Dong, T. Geng, Y. Jiang, Res. Chem. Intermed. 38 (2012) 1069 (http://dx.doi.org/10.1007/s11164-011-0443-3)

J. Granados-Reyes, P. Salagre, Y. Cesteros, Appl. Catal. A: Gen. 536 (2017) 9 (http://dx.doi.org/10.1016/j.apcata.2017.02.013)

R. A. C. Leão, S. P. de Souza, D. O. Nogueira, G. M. A. Silva, M. V. M. Silva, M. L. G. Estrada, L. S. M. Miranda, A. M. Castro, I. I. Junior, R. O. M. A. de Souza, Catal. Sci. Technol. 6 (2016) 4743 (http://dx.doi.org/10.1039/C6CY00295A)

S. Wang, J. Y. Wang, P. L. Sun, L. L. Xu, P. U. Okoye, S. X. Li, L. N. Zhang, A. B. Guo, J. Zhang, J. Clean Prod. 211 (2019) 330 (http://dx.doi.org/10.1016/j.jclepro.2018.11.196)

G. D. Feng, L. H. Hu, Y. Ma, M. Zhang, C. G. Liu, Y. H. Zhou, J. Appl. Polym. Sci. 135 (2018) 46182 (http://dx.doi.org/10.1002/app.46182)

D. Krizan, M. Komljenovic, B. Zivanovic, J. Serb. Chem. Soc. 70 (2005) 97 (http://www.oalib.com/paper/2899096)

H. K. Tchakouté, C. H. Rüscher, S. Kong, N. Ranjbar, J. Build. Eng. 6 (2016) 252 (http://dx.doi.org/10.1016/j.jobe.2016.04.007)

L. Fang, X. F. Duan, R.M. Chen, F. Q. Cheng, J. Air Waste Manage. 64 (2014) 887 (http://dx.doi.org/10.1080/10962247.2014.898002)

M. Deng, G. Y. Zhang, Y. Zeng, X. J. Pei, R. Q. Huang, J. H. Lin, J. Alloys Compd. 683 (2016) 412 (http://dx.doi.org/10.1016/j.jallcom.2016.05.115)

S. Q. Zhang, Y. R. Lee, J. W. Ahn, W. S. Ahn, Mater. Lett. 218 (2018) 56 (https://dx.doi.org/10.1016/j.matlet.2018.01.150)

X.L. SU, G. Q. Zuo, T. C. Cai, Guangzhou. Chem. Ind. 39 (2011) 110

P. Izak, L. Ogłaza, W. Mozgawa, J. Mastalska-Popławska, A. Stempkowska, Spectrochim. Acta. A. 196 (2018) 155 (https://dx.doi.org/10.1016/j.saa.2018.02.022)

N. Chueluecha, A. Kaewchada, A. Jaree, Energy Conv. Manage. 141 (2016) 145 (http://dx.doi.org/10.1016/j.enconman.2016.07.020)

D. Kumar, B. Singh, A. Banerjee, S. Chatterjee, J. Clean Prod. 183 (2018) 26 (http://dx.doi.org/10.1016/j.jclepro.2018.02.122)

K. K. Hu,H. J. Wang, Y. H. Liu, C. Yang, J. Ind. Eng. Chem. 28 (2015) 334 (http://dx.doi.org/10.1016/j.jiec.2015.03.012)

S. Wang, P. F. Hao, S. X. Li, A. L. Zhang, Y. Y. Guan, L. N. Zhang, Appl. Catal. A: Gen. 542 (2017) 174 (http://dx.doi.org/10.1016/j.apcata.2017.05.021)

V. Y. Prokof’ev, N. E. Gordina, E. M. Konstantinova, V. V. Voynova, T. N. Borisova, Mater. Chem. Phys. 213 (2018) 76 (http://dx.doi.org/10.1016/j.matchemphys.2018.03.090)

D. Dimas, I. Giannopoulou, D. Panias, J. Mater. Sci.-Mater. El. 44 (2009) 3719 (http://dx.doi.org/10.1007/s10853-009-3497-5)

F. Guo, N. N. Wei, Z. L. Xiu, Z. Fang, Fuel 93 (2012) 468 (https://dx.doi.org/10.1016/j.fuel.2011.08.064)

I. Halasz, M. Agarwal, R. B. Li, N. Miller, Catal. Lett. 117 (2007) 34 (https://dx.doi.org/10.1007/s10562-007-9141-6)

I. Lecomte, C. Henrist, M. Liegeois, F. Maseri, A. Rulmont, R. Cloots, J. Eur. Ceram. Soc. 26 (2006) 3789 (https://doi.org/10.1016/j.jeurceramsoc.2005.12.021)

M. Sitarz, M. Handke, W. Mozgawa, Spectrochim. Acta, A 56A (2000) 1819 (https://doi.org/10.1016/S1386-1425(00)00241-9)

B. U. Yoo, M. H. Han, H. H. Nersisyan, J. H. Yoon, K. J. Lee, J. H. Lee, Micropor. Mesopor. Mat. 190 (2014) 139 (https://doi.org/10.1016/j.micromeso.2014.02.005).

Published

2019-07-06

How to Cite

[1]
L. Xu, “Water glass derived catalyst for the synthesis of glycerol carbonate via the transesterification reaction between glycerol and dimethyl carbonate”, J. Serb. Chem. Soc., vol. 84, no. 6, pp. 609-622, Jul. 2019.

Issue

Section

Materials