Water glass derived catalyst for the synthesis of glycerol carbonate via the transesterification reaction between glycerol and dimethyl carbonate

Main Article Content

Lanlan Xu
Song Wang
Patrick U. Okoye
Jianye Wang
Sanxi Li
Linnan Zhang
Ailing Zhang
Tao Tang

Abstract

Water glasses with different modulus (mole ratio of SiO2 to Na2O) were applied as a raw material to prepare five solid base catalysts for the syn­thesis of glycerol carbonate (GC) by the transesterification reaction between glycerol and dimethyl carbonate (DMC). The structure and properties of the five water glass-derived catalysts were investigated by XRD, FT-IR, FESEM, BET and acid–base titration methods. The catalysts with relatively low mod­ulus, including 1.0, 1.5 and 2.0, presented good catalytic abilities, among which the catalyst derived from water glass with 2.0 modulus (WG-2.0) was chosen as the optimal catalyst in the synthesis of GC. This was because WG-2.0 showed the highest BET surface area, relatively high total basicity, and needed a less amount of NaOH during the preparation process. In the opti­mization experiments, this catalyst exhibited good catalytic ability with the glycerol conversion of 96.3 % and GC yield of 94.1 % under the condition of glycerol to DMC mole ratio of 1:4, WG-2.0 amount of 4 wt. %, reaction tem­perature of 348 K and reaction time of 90 min. Furthermore, the reusability experiment of WG-2.0 was also conducted and the results indicated that WG-2.0 could be reused five times without significant reduction in its catalytic ability.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
L. Xu, “Water glass derived catalyst for the synthesis of glycerol carbonate via the transesterification reaction between glycerol and dimethyl carbonate”, J. Serb. Chem. Soc., vol. 84, no. 6, pp. 609–622, Jul. 2019.
Section
Materials

References

Z. J. Predojevic, B. D. Škrbic, J. Serb. Chem. Soc. 74 (2009) 993 (https://dx.doi.org/10.2298/JSC0909993P)

V.C. Eze, A.P. Harvey, Chem. Eng. J. 347 (2018) 41 (https://dx.doi.org/10.1016/j.cej.2018.04.078)

M. Mantovani, D. Mandelli, M. Gonçalves, W. A. Carvalho, Chem. Eng. J.561 (2018) 1 (https://dx.doi.org/10.1016/j.cej.2018.05.059)

M. Aghbashlo, M. Tabatabaei, H. Rastegari, H. S. Ghaziaskar, T. R. Shojaei, Renew. Energ. 126 (2018) 242 (https://dx.doi.org/10.1016/j.renene.2018.03.047)

P. Devi, U. Das, A. K. Dalai, Chem. Eng. J. 346 (2018) 477 (https://dx.doi.org/10.1016/j.cej.2018.04.030)

A. Devarajan, S. Thiripuranthagan, R. Radhakrishnan, S. Kumaravel, J. Nanosci. Nanotechnol. 18 (2018) 4588 (https://dx.doi.org/10.1166/jnn.2018.15265)

, P. U. Okoye,, S. Wang,, L. Xu,, S. X. Li,, J. Y. Wang,, L. N. Zhang, Energy. Conv. Manage. 179 (2019) 192 (https://doi.org/10.1016/j.enconman.2018.10.013)

Y. F. Wu, X. H. Song, J. H. Zhang, S. Li, X. H. Yang, H. Z. Wang, R. P. Wei, L. J. Gao, J. Zhang, G. M. Xiao, J. Taiwan Inst. Chem. E. 87 (2018) 131 (https://dx.doi.org/10.1016/j.jtice.2018.03.023)

X. H. Song, Y. F. Wu, F. F. Cai, D. H. Pan, G. M. Xiao, Appl. Catal. A: Gen. 532 (2017) 77 (http://dx.doi.org/10.1016/j.apcata.2016.12.019)

M. J. Climent, A. Corma, P. D. Frutos, S. Iborra, M. Noy, A. Velty, P. Concepción, J. Catal. 269 (2010) 140 (http://dx.doi.org/10.1016/j.jcat.2009.11.001)

P. U. Okoye, A. Z. Abdullah, B. H. Hameed, Energy Conv. Manage. 133 (2016) 477 (http://dx.doi.org/10.1016/j.enconman.2016.10.067)

S. Wang, L. L. Xu, P. U. Okoye, S. X. Li, C. C. Tian, Energy Conv. Manage. 164 (2018) 543 (http://dx.doi.org/10.1016/j.enconman.2018.03.021)

M. Malyaadri, K. Jagadeeswaraiah, P. S. S. Prasad, N Lingaiah, Appl. Catal. A: Gen. 401 (2011) 153 (http://dx.doi.org/10.1016/j.apcata.2011.05.011)

J. R. Ochoa-Go´mez, O. Go´mez-Jime´nez-Aberasturi, B. Maestro-Madurga, A. Pesquera-Rodrı ´guez, C. Ramı ´rez-Lo´pez, L. Lorenzo-Ibarreta, J. Torrecilla-Soria, M. C.Villara´n-Velasco, Appl. Catal. A: Gen. 366 (2009) 315

(http://dx.doi.org/10.1016/j.apcata.2009.07.020)

S. Sandesh, G. V. Shanbhag, A. B. Halgeri, Catal. Lett. 143 (2013) 1226 (http://dx.doi.org/10.1007/s10562-013-1043-1)

M. Du, Q. Li, W. Dong, T. Geng, Y. Jiang, Res. Chem. Intermed. 38 (2012) 1069 (http://dx.doi.org/10.1007/s11164-011-0443-3)

J. Granados-Reyes, P. Salagre, Y. Cesteros, Appl. Catal. A: Gen. 536 (2017) 9 (http://dx.doi.org/10.1016/j.apcata.2017.02.013)

R. A. C. Leão, S. P. de Souza, D. O. Nogueira, G. M. A. Silva, M. V. M. Silva, M. L. G. Estrada, L. S. M. Miranda, A. M. Castro, I. I. Junior, R. O. M. A. de Souza, Catal. Sci. Technol. 6 (2016) 4743 (http://dx.doi.org/10.1039/C6CY00295A)

S. Wang, J. Y. Wang, P. L. Sun, L. L. Xu, P. U. Okoye, S. X. Li, L. N. Zhang, A. B. Guo, J. Zhang, J. Clean Prod. 211 (2019) 330 (http://dx.doi.org/10.1016/j.jclepro.2018.11.196)

G. D. Feng, L. H. Hu, Y. Ma, M. Zhang, C. G. Liu, Y. H. Zhou, J. Appl. Polym. Sci. 135 (2018) 46182 (http://dx.doi.org/10.1002/app.46182)

D. Krizan, M. Komljenovic, B. Zivanovic, J. Serb. Chem. Soc. 70 (2005) 97 (http://www.oalib.com/paper/2899096)

H. K. Tchakouté, C. H. Rüscher, S. Kong, N. Ranjbar, J. Build. Eng. 6 (2016) 252 (http://dx.doi.org/10.1016/j.jobe.2016.04.007)

L. Fang, X. F. Duan, R.M. Chen, F. Q. Cheng, J. Air Waste Manage. 64 (2014) 887 (http://dx.doi.org/10.1080/10962247.2014.898002)

M. Deng, G. Y. Zhang, Y. Zeng, X. J. Pei, R. Q. Huang, J. H. Lin, J. Alloys Compd. 683 (2016) 412 (http://dx.doi.org/10.1016/j.jallcom.2016.05.115)

S. Q. Zhang, Y. R. Lee, J. W. Ahn, W. S. Ahn, Mater. Lett. 218 (2018) 56 (https://dx.doi.org/10.1016/j.matlet.2018.01.150)

X.L. SU, G. Q. Zuo, T. C. Cai, Guangzhou. Chem. Ind. 39 (2011) 110

P. Izak, L. Ogłaza, W. Mozgawa, J. Mastalska-Popławska, A. Stempkowska, Spectrochim. Acta. A. 196 (2018) 155 (https://dx.doi.org/10.1016/j.saa.2018.02.022)

N. Chueluecha, A. Kaewchada, A. Jaree, Energy Conv. Manage. 141 (2016) 145 (http://dx.doi.org/10.1016/j.enconman.2016.07.020)

D. Kumar, B. Singh, A. Banerjee, S. Chatterjee, J. Clean Prod. 183 (2018) 26 (http://dx.doi.org/10.1016/j.jclepro.2018.02.122)

K. K. Hu,H. J. Wang, Y. H. Liu, C. Yang, J. Ind. Eng. Chem. 28 (2015) 334 (http://dx.doi.org/10.1016/j.jiec.2015.03.012)

S. Wang, P. F. Hao, S. X. Li, A. L. Zhang, Y. Y. Guan, L. N. Zhang, Appl. Catal. A: Gen. 542 (2017) 174 (http://dx.doi.org/10.1016/j.apcata.2017.05.021)

V. Y. Prokofev, N. E. Gordina, E. M. Konstantinova, V. V. Voynova, T. N. Borisova, Mater. Chem. Phys. 213 (2018) 76 (http://dx.doi.org/10.1016/j.matchemphys.2018.03.090)

D. Dimas, I. Giannopoulou, D. Panias, J. Mater. Sci.-Mater. El. 44 (2009) 3719 (http://dx.doi.org/10.1007/s10853-009-3497-5)

F. Guo, N. N. Wei, Z. L. Xiu, Z. Fang, Fuel 93 (2012) 468 (https://dx.doi.org/10.1016/j.fuel.2011.08.064)

I. Halasz, M. Agarwal, R. B. Li, N. Miller, Catal. Lett. 117 (2007) 34 (https://dx.doi.org/10.1007/s10562-007-9141-6)

I. Lecomte, C. Henrist, M. Liegeois, F. Maseri, A. Rulmont, R. Cloots, J. Eur. Ceram. Soc. 26 (2006) 3789 (https://doi.org/10.1016/j.jeurceramsoc.2005.12.021)

M. Sitarz, M. Handke, W. Mozgawa, Spectrochim. Acta, A 56A (2000) 1819 (https://doi.org/10.1016/S1386-1425(00)00241-9)

B. U. Yoo, M. H. Han, H. H. Nersisyan, J. H. Yoon, K. J. Lee, J. H. Lee, Micropor. Mesopor. Mat. 190 (2014) 139 (https://doi.org/10.1016/j.micromeso.2014.02.005).