Undecanol–ethanol–water ternary system-based microextraction for the detection of cadmium (Short communication)

Main Article Content

Oya Aydın Urucu
Ece Kök Yetimoğlu
Şeyda Dönmez
Sabahattin Deniz

Abstract

An eco-friendly, simple, and sensitive solidification of floating organic drop based dispersive liquid–liquid microextraction (SFODME) procedure was intro­duced for the separation and preconcentration of cadmium. After 2-(5-bromo-
-2-pyri­dylazo)-5-(diethylamino)phenol (5-Br-PADAP) was complexed with cad­mium ions in sample, the undecanol–ethanol–water ternary system was used as an organic solvent for extraction. The main factors relevant to the microextraction efficiency such as pH, concentration of 5-Br-PADAP, amount of extraction solvent were optimized. The detection limit is 0.01 µg L-1 along with preconcentration factor 266. The recovery of the analyte was between 98 % and 103 %, with relative standard deviation below 6 %. The developed procedure was successfully tested on the analysis of water, hair dye, and food samples.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
O. Aydın Urucu, E. Kök Yetimoğlu, Şeyda Dönmez, and S. Deniz, “Undecanol–ethanol–water ternary system-based microextraction for the detection of cadmium (Short communication)”, J. Serb. Chem. Soc., vol. 84, no. 4, pp. 435–443, Apr. 2019.
Section
Environmental Chemistry

References

S. E. Manahan, Environmental Science and Technology, Boca Raton, FL, 2000 (http://www.chemistry.uoc.gr/courses/xhm405/01%20Environmental%20Chemistry%20Manahan.pdf)

P. B. Tchounwou, C. G. Yedjou, A. K Patlolla, D. J. Sutton, Mol. Clin. Environ. Toxicol. 101 (2012) 133 (https://link.springer.com/chapter/10.1007/978-3-7643-8340-4_6 )

R. E. Rivas, I. L. García, M. H.Córdoba, Microchim. Acta 166 (2009) 355 (http://www.um.es/xxirne/files/Download/233.pdf)

L. Machynak, M.Nemecek, E. Beınrohr, F.Cacho, Turk. J. Chem. 41 (2017) 559 (https://pdfs.semanticscholar.org/355e/02e3adc89e2cc2d6a82869229ea65495617c.pdf )

K. Cennet, Water Qual. Res. 52 (2017) 178 (https://doi.org/10.2166/wqrj.2017.004)

S. Hamidi, N. A. Ghorbani, H. Samin, A. G. Nastaran, J. Liq. Chromatogr. 40 (2017) 853 (https://doi.org/10.1080/10826076.2017.1374291 )

M. Soylak, Y. E. Unsal, Toxicol. Environ. Chem. 94 (2012) 1480 ()

M. Soylak, E. Kiranartligiller, Arab. J. Sci. Eng. 42 (2017) 175 (https://link.springer.com/article/10.1007/s13369-016-2208-1)

F. Aydin, E. Yilmaz, M. Soylak, Int. J. Environ. Anal. Chem. 96 (2016) 1356 (https://doi.org/10.1080/03067319.2016.1253690)

J. W. Zhang, Y. K. Wang, X. Du, X. Lei, J. J Ma, J. C. Li, Braz. Chem. Soc. 22 (2011) 446 (http://dx.doi.org/10.1590/S0103-50532011000300006 )

C. Karadas, D. Kara, Food Chem. 220, (2017) 242 (https://doi.org/10.1016/j.foodchem.2016.09.005)

N. S. La Colla, C. E. Domini, J. E Marcovecchio, S. E. Bott, J. Environ. Manage. 151 (2015) 44 (https://doi.org/10.1016/j.jenvman.2014.11.030)

R. K. Banjare, M. K. Deb, Indian J. Chem., A 45 (2006) 1408 (http://nopr.niscair.res.in/bitstream/123456789/20006/1/IJCA%2045A%286%29%201408-1412.pdf )

P. R. Aranda, R. A. Gil, S. Moyano, I. D. Vito, L. D. Martinez, Talanta 77 (2008) 663 (https://www.sciencedirect.com/science/article/pii/S0039914008005201 )

E. M. Martinisa, R. A. Olsina, J. C. Altamirano, R. G.Wuilloud, Talanta 78 (2009) 857 (https://www.sciencedirect.com/science/article/pii/S0039914009000125 )

V. Gomis, M. D. Saquete, N. B. Botella, J. Chem. Eng. 60 (2015) 1934 (Chem. Eng. Data 60, 6, 1934-1938)

P. Meghdad, F. Nazir, S. Mojtab, Food Control 34 (2013) 378 (https://www.sciencedirect.com/science/article/pii/S0956713513002545 )

G. Peng, Q. He, S. M. Al-Hamadani, G. Zhou, M. Liu, H. Zhu, J. Chen, Ecotoxicol. Environ Saf, 115 (2015) 229 (https://doi.org/10.1016/j.ecoenv.2015.02.025)

Z. Marczenko, M. Balcerzak, Separation, Preconcentration and Spectrophotometry in Inorganic Analysis, Vol. 10, 1st ed., Elsevier Science, Amsterdasm, 2000 (https://www.sciencedirect.com/bookseries/analytical-spectroscopy-library/vol/10)

L. Xue, D. Zhang, T. Wang, X. M. Wanga, X. Du, Anal. Methods 6 (2014) 1121 (https://pubs.rsc.org/en/content/getauthorversionpdf/C3AY41996G)

J. Ning, Y. Jiao, J. Zhao, L. Meng, Y. Yang, Water Sci. Technol. 70 (2014) 605 (https://doi.org/10.2166/wst.2014.263)

V. N. Bulut, H. Demirci, D. Ozdes, A. Gundogdu, O. Bekircan, M. Soylak, C. Duran, Prog. Sustain. Energy, 35 (2016) 1709 ( https://doi.org/10.1002/ep.12422)

S. Z. Mohammadia, R. Roohparvarb, M. A. Taherb, J. Anal. Chem. 71 (2016) 42 (https://link.springer.com/article/10.1134/S106193481601007X )

R. Parviz, M. Honari, Bulg. Chem. Commun. 48 (2016) 43 (https://pdfs.semanticscholar.org/eee7/5ad1702fc230891cc0f874da552dffc7c562.pdf)

S. Heydari, Can. Chem. Trans. 2 (2014) 12 (http://canchemtrans.ca/uploads/journals/CCT-2013-0049.pdf)

S. Dadfarnia, A. M. H. Shabani, E. Kamranzadeh, Talanta 79 (2009) 1061 (https://doi.org/10.1016/j.talanta.2009.02.004).