Undecanol–ethanol–water ternary system-based microextraction for the detection of cadmium (Short communication)

Oya Aydın Urucu, Ece Kök Yetimoğlu, Şeyda Dönmez, Sabahattin Deniz

Abstract


An eco-friendly, simple, and sensitive solidification of floating organic drop based dispersive liquid–liquid microextraction (SFODME) procedure was intro­duced for the separation and preconcentration of cadmium. After 2-(5-bromo-
-2-pyri­dylazo)-5-(diethylamino)phenol (5-Br-PADAP) was complexed with cad­mium ions in sample, the undecanol–ethanol–water ternary system was used as an organic solvent for extraction. The main factors relevant to the microextraction efficiency such as pH, concentration of 5-Br-PADAP, amount of extraction solvent were optimized. The detection limit is 0.01 µg L-1 along with preconcentration factor 266. The recovery of the analyte was between 98 % and 103 %, with relative standard deviation below 6 %. The developed procedure was successfully tested on the analysis of water, hair dye, and food samples.


Keywords


eco-friendly; GFAAS; microextraction; heavy metal ions

Full Text:

PDF (2,178 kB)

References


S. E. Manahan, Environmental Science and Technology, Boca Raton, FL, 2000 (http://www.chemistry.uoc.gr/courses/xhm405/01%20Environmental%20Chemistry%20Manahan.pdf)

P. B. Tchounwou, C. G. Yedjou, A. K Patlolla, D. J. Sutton, Mol. Clin. Environ. Toxicol. 101 (2012) 133 (https://link.springer.com/chapter/10.1007/978-3-7643-8340-4_6 )

R. E. Rivas, I. L. García, M. H.Córdoba, Microchim. Acta 166 (2009) 355 (http://www.um.es/xxirne/files/Download/233.pdf)

L. Machynak, M.Nemecek, E. Beınrohr, F.Cacho, Turk. J. Chem. 41 (2017) 559 (https://pdfs.semanticscholar.org/355e/02e3adc89e2cc2d6a82869229ea65495617c.pdf )

K. Cennet, Water Qual. Res. 52 (2017) 178 (https://doi.org/10.2166/wqrj.2017.004)

S. Hamidi, N. A. Ghorbani, H. Samin, A. G. Nastaran, J. Liq. Chromatogr. 40 (2017) 853 (https://doi.org/10.1080/10826076.2017.1374291 )

M. Soylak, Y. E. Unsal, Toxicol. Environ. Chem. 94 (2012) 1480 ()

M. Soylak, E. Kiranartligiller, Arab. J. Sci. Eng. 42 (2017) 175 (https://link.springer.com/article/10.1007/s13369-016-2208-1)

F. Aydin, E. Yilmaz, M. Soylak, Int. J. Environ. Anal. Chem. 96 (2016) 1356 (https://doi.org/10.1080/03067319.2016.1253690)

J. W. Zhang, Y. K. Wang, X. Du, X. Lei, J. J Ma, J. C. Li, Braz. Chem. Soc. 22 (2011) 446 (http://dx.doi.org/10.1590/S0103-50532011000300006 )

C. Karadas, D. Kara, Food Chem. 220, (2017) 242 (https://doi.org/10.1016/j.foodchem.2016.09.005)

N. S. La Colla, C. E. Domini, J. E Marcovecchio, S. E. Bott, J. Environ. Manage. 151 (2015) 44 (https://doi.org/10.1016/j.jenvman.2014.11.030)

R. K. Banjare, M. K. Deb, Indian J. Chem., A 45 (2006) 1408 (http://nopr.niscair.res.in/bitstream/123456789/20006/1/IJCA%2045A%286%29%201408-1412.pdf )

P. R. Aranda, R. A. Gil, S. Moyano, I. D. Vito, L. D. Martinez, Talanta 77 (2008) 663 (https://www.sciencedirect.com/science/article/pii/S0039914008005201 )

E. M. Martinisa, R. A. Olsina, J. C. Altamirano, R. G.Wuilloud, Talanta 78 (2009) 857 (https://www.sciencedirect.com/science/article/pii/S0039914009000125 )

V. Gomis, M. D. Saquete, N. B. Botella, J. Chem. Eng. 60 (2015) 1934 (Chem. Eng. Data 60, 6, 1934-1938)

P. Meghdad, F. Nazir, S. Mojtab, Food Control 34 (2013) 378 (https://www.sciencedirect.com/science/article/pii/S0956713513002545 )

G. Peng, Q. He, S. M. Al-Hamadani, G. Zhou, M. Liu, H. Zhu, J. Chen, Ecotoxicol. Environ Saf, 115 (2015) 229 (https://doi.org/10.1016/j.ecoenv.2015.02.025)

Z. Marczenko, M. Balcerzak, Separation, Preconcentration and Spectrophotometry in Inorganic Analysis, Vol. 10, 1st ed., Elsevier Science, Amsterdasm, 2000 (https://www.sciencedirect.com/bookseries/analytical-spectroscopy-library/vol/10)

L. Xue, D. Zhang, T. Wang, X. M. Wanga, X. Du, Anal. Methods 6 (2014) 1121 (https://pubs.rsc.org/en/content/getauthorversionpdf/C3AY41996G)

J. Ning, Y. Jiao, J. Zhao, L. Meng, Y. Yang, Water Sci. Technol. 70 (2014) 605 (https://doi.org/10.2166/wst.2014.263)

V. N. Bulut, H. Demirci, D. Ozdes, A. Gundogdu, O. Bekircan, M. Soylak, C. Duran, Prog. Sustain. Energy, 35 (2016) 1709 ( https://doi.org/10.1002/ep.12422)

S. Z. Mohammadia, R. Roohparvarb, M. A. Taherb, J. Anal. Chem. 71 (2016) 42 (https://link.springer.com/article/10.1134/S106193481601007X )

R. Parviz, M. Honari, Bulg. Chem. Commun. 48 (2016) 43 (https://pdfs.semanticscholar.org/eee7/5ad1702fc230891cc0f874da552dffc7c562.pdf)

S. Heydari, Can. Chem. Trans. 2 (2014) 12 (http://canchemtrans.ca/uploads/journals/CCT-2013-0049.pdf)

S. Dadfarnia, A. M. H. Shabani, E. Kamranzadeh, Talanta 79 (2009) 1061 (https://doi.org/10.1016/j.talanta.2009.02.004).




DOI: https://doi.org/10.2298/JSC180831110U

Copyright (c) 2018 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.797 (139 of 171 journals)
5 Year Impact Factor 0.923 (134 of 171 journals)