Effects of hemazin SC 500 (terbuthylazine) on antioxidative enzymes in human erythrocytes in vitro
Main Article Content
Abstract
The aim of this work was to investigate the effect of the commercial formulation hemazin SC 500, an herbicide containing terbuthylazine as the active compound, on the isoenzyme patterns and activities of Cu-Zn superoxide dismutase (SOD1) and catalase (CAT), as well as on the glutathione S-transferase (GST) activity, in human erythrocytes in vitro. The human erythrocytes were treated with hemazin SC 500 over a broad range of terbuthylazine concentrations (37 nmol L-1–
–37 mmol L-1) for 1 and 3 h at a temperature of 37 °C. Native electrophoresis of the control and treated samples revealed two SOD1 and one CAT isoform. Treatment did not affect the SOD1 and CAT isoenzyme profile, but induced a change in their activities. Terbuthylazine at lower concentration induced a significant increase of the total SOD1 activity and decreased the GST activity in samples incubated for 1 and 3 h. On the other hand, the highest increase in the CAT activity was observed for the sample treated for 1 h with a higher concentration of terbuthylazine. Hemazin SC 500 containing terbuthylazine induces changes in the erythrocyte antioxidative system whereby the response of individual enzymatic antioxidants depends on the concentration of the pesticide and the incubation time.
Downloads
Metrics
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
PAN Pesticides Database – Chemicals, http://www.pesticideinfo.org/Search_Chemicals.jsp (аccessed 20 December 2017)
Pesticide Reregistration Status (https://archive.epa.gov/pesticides/reregistration/web/html/status.html)
F. M. El-Demerdash, Toxicol. In Vitro 21 (2007) 392 (https://doi.org/10.1016/j.tiv.2006.09.019)
R. Saxena, P. Garg, D. K. Jain, Toxicol. Int. 18 (2011) 73 (https://doi.org/10.4103/0971-6580.75871)
J. S. Bhatti, I. P. Sidhu, G. K. Bhatti, Mol. Cell. Biochem. 353 (2011) 139 (https://doi.org/10.1007/s11010-011-0780-y)
D. Spoljaric, A. Cipak, J. Horvatic, L. Andrisic, G. Waeg, N. Zarkovic, M. Jaganjac, Aquat. Toxicol. 105 (2011) 552 (https://doi.org/10.1016/j.aquatox.2011.08.007)
European Food Safety Authority (EFSA). EFSA J. 9 (2011) 1969 (https://doi.org/10.2903/j.efsa.2011.1969)
J. Velisek, A. Stara, D. Koutnik, J. Machova, Biomed Res. Int. 2014 (2014) Article ID 621304 (http://dx.doi.org/10.1155/2014/621304)
A. Stara, E. Zuskova, A. Kouba, J. Velisek, Sci. Total Environ. 566–567 (2016) 733 (https://doi.org/10.1016/j.scitotenv.2016.05.113)
A. Santi, C. Menezes, M. M. Duarte, J. Leitemperger, T. Lópes, V. L. Loro, Interdiscip. Toxicol. 4 (2011) 149 (https://doi.org/10.2478/v10102-011-0023-9)
M. Mladinic, D. Zeljezic, S. A. Shaposhnikov, A. R. Collins, Toxicol. Lett. 211 (2012) 62 (https://doi.org/10.1016/j.toxlet.2012.03.001)
D. Želježić, S. Žunec, M. Bjeliš, V. Benković, M. Mladinić, B. Lovaković Tariba, I. Pavičić, A. M. Marjanović Čermak, V. Kašuba, M. Milić, A. Pizent, A. Lucić Vrdoljak, N. Kopjar, Environ. Sci. Pollut. Res. 25 (2018) 19065 (https://doi.org/10.1007/s11356-018-2046-7)
B. R. Baillie, N. Z. J. For. Sci. 46 (2016) 16 (https://doi.org/10.1186/s40490-016-0072-0)
Terbuthylazine (compound). PubChem, https://pubchem.ncbi.nlm.nih.gov/compound/Terbuthylazine#section=Solubility (аccessed 20 December 2017)
D. L. Drabkin, H. L. Austin, J. Biol. Chem. 112 (1935) 51 (http://www.jbc.org/content/112/1/51.full.pdf)
M. Tsuchihashi, Biochem. Z. 140 (1923) 65
C. Beauchamp, I. Fridowich, Anal. Biochem. 44 (1971) 276 (https://doi.org/10.1016/0003-2697(71)90370-8)
W. Woodbury, A. K. Spencer, M. A. Stahmann, Anal. Biochem. 44 (1971) 301 (https://doi.org/10.1016/0003-2697(71)90375-7)
W. H. Habig, M. J. Pabst, W. B. Jakoby, J. Biol. Chem. 249 (1974) 7130 (http://www.jbc.org/content/249/22/7130.full.pdf)
W. I. Sadowska, I. N. Wojcik, A. Karowicz-Bilinska, E. Bieszczad-Bedrejczuk, Toxicol. in Vitro 24 (2010) 879 (https://doi.org/10.1016/j.tiv.2009.11.022)
I. Altuntas, I. Kilinc, H. Orhan, R. Demirel, H. Koylu, N. Delibas, Hum. Exp. Toxicol. 23 (2004) 9 (https://doi.org/10.1191/0960327104ht408oa)
J. M. Rifkind, E. Nagababu, S. Ramasamy, L. B. Ravi, Redox Rep. 8 (2003) 234 (https://doi.org/10.1179/135100003225002817)
D. G. Searcy, J. P. Whitehead, M. J. Maroney, Arch. Biochem. Biophys. 318 (1995) 251 (https://doi.org/10.1006/abbi.1995.1228)
F. Gultekin, M. Ozturk, M. Akdogan. Arch. Toxicol. 74 (2000) 533 (https://doi.org/10.1007/s002040000167)
J. I. Toohey, A. J. Cooper, Molecules 19 (2014) 12789 (https://doi.org/10.3390/molecules190812789)
A. G. Kriebardis, M. H. Antonelou, K. E. Stamoulis, E. Economou-Petersen, L. H. Margaritis, I. S. Papassideri, J. Cell. Mol. Med. 11 (2007) 148 (https://doi.org/10.1111/j.1582-4934.2007.00008.x)
B. Karademir Catalgol, S. Ozden, B. Alpertunga, Toxicol. In Vitro 21 (2007) 1538 (https://doi.org/10.1016/j.tiv.2007.06.002)
S. Eroğlu, D. Pandir, F. G. Uzun, H. Bas, Biol. Res. 46 (2013) 33 (http://dx.doi.org/10.4067/S0716-97602013000100005)
Y. Kono, I. Fridovich, J. Biol. Chem. 257 (1982) 5751 (http://www.jbc.org/content/257/10/5751.full.pdf)
E. Pigeolet, P. Corbisier, A. Houbion, D. Lambert, C. Michiels, M. Raes, M. D. Zachary, J. Remacle, Mech. Ageing Dev. 51 (1990)283 (https://doi.org/10.1016/0047-6374(90)90078-T)
B. J. Simoneaux, T. J. Gould, Plant Uptake and Metabolism of Triazine Herbicides, in The Triazine Herbicides 50 years Revolutionizing Agriculture, H. M. LeBaron, J. E. McFarland, O. C. Burnside, Eds., Elsevier, Oxford, UK, 2008, p. 73 (http://base.dnsgb.com.ua/files/book/Agriculture/Pesticides/The-Triazine-Herbicides.pdf)
V. M. Neefjes, C. T. Evelo, L. G. Baars, C. E. Blanco, Arch. Dis. Child. Fetal Neonatal Ed. 81 (1999) F130 (http://dx.doi.org/10.1136/fn.81.2.F130).