Accelerated physical and chemical transformations in ceramics processing

Ernő Kiss, Sanja Panić

Abstract


From economic and environmental points of view, solid phase chem­ical reactions are very important parts of modern chemistry and technology, enabling various processes to become cleaner, safer and easier to perform. This survey presents the basic concepts of solid-state transformations in ceramics processing, including notions and phenomena described in capital books on silicate chemistry, published more than 100 years ago, to the present day. During this period, scientists and practitioners in the field of ceramics process­ing used concepts related to the acceleration of phase transitions and chemical reactions. Today, the differences between various accelerating agents (flux agents, mineralizers and catalysts) in terms of their composition and mech­anism of action are almost completely defined and clearly delimited. However, in ceramics processing, a more general term additive is preferably used instead of the previously mentioned ones. The aim of this work is to show that all accelerating agents are equally important to researchers in the field of catalysis and material science, emphasizing that the used terminology could be inter­preted from different perspectives.


Keywords


solid state transformations; chemical reactions; flux agents; mineralizers; catalysts.

Full Text:

PDF (2,892 kB)

References


A. K. Galwey, M. E. Brown (Editors), Studies in Physical and Theoretical Chemistry, Chapter 3: Kinetic models of solid State Reactions, Elsevier, Amsterdam, Netherlands, 1999, p. 75 (https://doi.org/10.1016/S0167-6881(99)80004-4)

S. Vyazovkin, C. A. Wight, Int. Rev. Phys. Chem. 17 (1998) 407 (https://doi.org/10.1080/014423598230108)

M. N. Rahaman, Ceramic Processing and Sintering, Second Edition, Marcel Dekker, Inc., New York, Basel, 2003, p. 677 (ISBN 10: 0824709888)

T. T. Tran, Fluoride Mineralization of Portland Cement, PhD Thesis, Department of Chemistry, Faculty of Science and Technology, Aarhus University, Denmark, 2011, p. 8

P. Putanov, Uvod u heterogenu katalizu, SANU-Prosveta, Novi Sad, 1995, p. 11

C. Doelter, Handbuch der Mineralchemie, Band II, Erste Hälfte, Silikate, Springer-Verlag, Berlin, Heidelberg GmbH, 1914, p. 52

H. F. Becke, N. Folge, A. Band, Tschermak´s Mineralogische und petrografische Mitteilungen, Wien: Universitäts-Buchhändler, 1899

F. Singer, Das Steinzeug, Springer Fachmedien Wiesbaden GmbH, 1929, p. 37

F. Singer, S. S. Singer, Industrielle Keramik, Erster Band, Die Rohstoffe, Eigenschaften, Vorkommen, Gewinnung und Untersuchung, Springer-Verlag, Berlin, Göttingen, Heidelberg, New York, 1964, p. 202

P. P. Budnikov, A. M. Ginsztling, Szilárd fázisú reakciók, Műszaki Könyvkiadó, Budapest, Hungary, 1968, p. 206

M. Bigaré, A. Guinier, M. Mazières, M. Regourd, N. Yannaquis, W. Eysbl, J. Am. Ceram. Soc. 50 (1967) 609 (https://doi.org/10.1111/j.1151-2916.1967.tb15009.x)

J. Nettleship, K. G. Slavick, Y. J. Kim, W. M. Kriven, J. Am. Ceram. Soc. 75 (1992) 2400 (https://doi.org/10.1111/j.1151-2916.1992.tb05592.x)

W. Kurdowski, Cement and Concrete Chemistry, Chapter 2, Portland Cement Clinker, Springer Science + Business Media B. V., 2014, p. 21

C. J. Engelsen, Advanced cementing materials - Effect of mineralizers in cement production, Report No. SBF BK A07021, SINTEF Building and Infrastructure-Concrete Innovation Centre (COIN), Trondheim, Norway, 2007, p. 1

V. V. Timashev, The kinetics of clinker formation: the structure and composition of clinker and its phases, in Proceedings of the 7th International Congress on the Chemistry of Cement, (1980), Paris, France, Editions Septima, Paris, p. 1: I-3/1

G. Kakali, G. Parissakis, D. Bouras, Cement Concrete Res. 26 (1996) 1473 (https://doi.org/10.1016/0008-8846(96)00143-3)

K. Kolovos, S. Tsvilis, G. Kakali, Cement Concrete Res. 32 (2002) 463 (https://doi.org/10.1016/S0008-8846(01)00705-0)

G. H. Hou, X. D. Shen, Z. Z. Xu, J. Wuhan Univ. Technol., Science Edition 22 (2007) 56 (https://doi.org/10.1007/s11595-005-1056-8)

D. Stephan, H. Maleki, D. Knofel, B. Eber, R. Hardtl, Cement Concrete Res. 29 (1999) 545 (https://doi.org/10.1016/S0008-8846(99)00009-5)

D. Stephan, H. Maleki, D. Knofel, B. Eber, R. Hardtl, Cement Concrete Res. 29 (1999) 651 (https://doi.org/10.1016/S0008-8846(99)00008-3)

G. Kakali, G. Parissakis, Cement Concrete Res. 25 (1995) 1473 (https://doi.org/10.1016/0008-8846(94)00115-F)

E. G. Shame, F. P. Glasser, Tran. Br. Ceram. Soc. 86 (1987) 13

R. G. Orlova, V. D. Beshentsev, I. Kh. Moroz, A. F. Mironova, Glass Ceram. 46 (1989) 453 (https://doi.org/10.1007/BF00677586)

M. Dadkhah, A. Saboori, M. Jafari, J. Mater. 2014 (2014) Article ID 496146, 7 pages (http://dx.doi.org/10.1155/2014/496146)

D. Chakravarty, S. Bysakh, K. Muraleedharam, T. N. Rao, R. Sundaresan, J. Am. Chem. Soc. 91 (2008) 203 (https://doi.org/10.1111/j.1551-2916.2007.02094.x)

L. C. De Jonghe, M. N. Rahaman, Handbook of Advanced Ceramics, Chapter 4, Sintering of Ceramics, Elsevier Science & Technology Books, Amsterdam, Netherlands, 2003, p. 187 (https://doi.org/10.1016/B978-012654640-8/50006-7)

H. van Wijck, H. Marks, Ziegelindustrie International 6 (2011) 32

C. Ødegård, H. Foldberg, B. Myhre, Magnesia-Silica-Hydrate Bonded MgO Castables, Elkem ASA Materials, Kristiansand, Norway, 2018, p. 11

S. Bošković, J. Mater. Sci. 25 (1990) 1513 (https://doi.org/10.1007/BF00585475)

L. Ceja-Cárdenas, J. Lemus-Ruíz, D. Jaramillo-Vigueras, S. D. de la Torre, J. Alloy. Compd. 501 (2010) 345 (https://doi.org/10.1016/j.jallcom.2010.04.102)

X. Guo, H. Yang, J. Zhejiang Univ.-Sc. B 6 (2005) 213 (https://doi.org/10.1631/jzus.2005.B0213)

P. Putanov, E. Kiš, G. Lomić, G. Bošković, Metal support interactions and solid-state reactions in heterogeneous catalysts, in Proceedings of the 9th International Congress on Catalysis, Vol. III., (1988), Ottawa, Canada, The Chemical Institute of Canada, Ottawa, p. 1347

E. E. Kiss, G. Bošković, Process. Appl. Ceram. 6 (2012) 173 (https://doi.org/10.2298/PAC1204173K)

A. Uludag, D. Turan, Int. J. Mater. Mech. Manuf. 3 (2015) 105 (https://doi.org/10.7763/IJMMM.2015.V3.176)

M. Bartsch, B. Saruhan, M. Schmucker, H. Schneider, J. Am. Ceram. Soc. 82 (1999) 1388 (https://doi.org/10.1111/j.1151-2916.1999.tb01928.x)

Z. Zhu, Z. Wei, J. Shen, L. Zhu, Y. Zhang, S. Wang, T. Liu, Ceram. Int. 43 (2017) 2871 (https://doi.org/10.1016/j.ceramint.2016.11.035)

S. Chaturvedi, P. N. Dave, J. Exp. Nanosci. 7 (2012) 205 (https://doi.org/10.1080/17458080.2010.517571)

J. B. Goodenough, Annu. Rev. Mater. Sci. 28 (1998) 1 (https://doi.org/10.1146/annurev.matsci.28.1.1)

N. B. Hannay, Treatise on Solid State Chemistry, Vol. 1, Plenum Press, New York, London, 1975, p. 202 (https://doi.org/10.1063/1.3068779)

R. B. Heslop, K. Jones, Inorganic Chemistry. A Guide to Advanced Study, Elsevier, Amsterdam, Netherlands, 1980, p. 195 (https://doi.org/10.1021/ed041pA532.1)

D. M. Adams, Inorganic Solids. An Introduction to Concept in Solid-State Structural Chemistry, John Wiley & Sons, London, UK, 1974, p. 145 (https://doi.org/10.1002/bbpc.19750790817)

Handbook of the Philosophy of Science, Volume 6, Philosophy of Chemistry, Elsevier B.V., Amsterdam, Boston, 2012, p. 199

E. E. Kiš, G. A. Lomić, G. C. Bošković, R. P. Marinković-Nedučin, React. Kinet. Catal. Lett. 63 (1998) 323 (https://doi.org/10.1007/BF02475406)

A. B. P. Lever, Inorganic Electronic Spectroscopy, Elsevier, Amsterdam, Netherlands, 1968, p. 143 (https://doi.org/10.1021/ed046pA628.1)

E. E. Kiss, P. S. Putanov, React. Kinet. Catal. Lett. 75 (2002) 39 (https://doi.org/10.1023/A:1014889216112)

J. S. Kiurski, D. Ž. Obadović, E. E. Kiš, R. P. Marinković-Nedučin, React. Kinet. Catal. Lett. 84 (2005) 359 (https://doi.org/10.1007/s11144-005-0230-5)

M. Ozawa, H. Toda, O. Kato, S. Suzuki, Appl. Catal. B. Environ. 8 (1996) 123 (https://doi.org/10.1016/0926-3373(95)00061-5)

W. Hu, F. Donat, S. A. Scott, J. S. Dennis, RSC Adv. 6 (2016) 113016 (https://doi.org/10.1039/c6ra22712k)

S. Lamouri, M. Hamidouche, N. Bouaouadja, H. Belhouchet, V. Garnier, G. Fantozzi, J. F. Trelkat, Boletín de la Sociedad Española de Cerámica y Vidrio 56 (2017) 47 (http://dx.doi.org/10.1016/j.bsecv.2016.10.001)

T. Martišius, R. Giraitis, J. Mater. Chem. 13 (2003) 121 (https://doi.org/10.1039/B206711K)

Solid State Physics, Advances in Research and Applications, Vol. 20, Academic Press, New York and London, 1967, p. 94

E. E. Kiss, P. S. Putanov, React. Kinet. Catal. Lett. 79 (2003) 325 (https://doi.org/10.1023/A:1024546521003).




DOI: https://doi.org/10.2298/JSC181029046K

Copyright (c) 2019 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)