Probiotic potential of Lactobacillus fermentum G-4 originated from newborns meconium

Gordana Nikola Zavišić, Saša M Petričević, Slavica M Ristić, Milena G Rikalović, Nataša M Jovanović-Lješković, Jelena M Begović, Ivana D Strahinić

Abstract


The present study was dedicated to determining probiotic potential of a human isolate G-4, originated from meconium. The isolate was identified using morphological, physiological and biochemical assays and molecular method based on 16S rRNA gene sequencing. In order to evaluate its probiotic properties in vitro tests were performed: the survival in simulated gastrointestinal conditions, adhesion to hexadecane, and antimicrobial activity. Safety aspects of the isolate were examined by testing toxicity, gastrointestinal tolerance and bacterial translocation in vivo, as well as hemolytic activity in vitro. The isolate G-4, identified as Lactobacillus fermentum, showed viability in artificial gastric and intestinal juice (low degree of cell viability reduction for 0.69 and 1.30 log CFU mL-1 units, respectively), moderate adhesion to hexadecane (39±2.1 %), and antimicrobial activity against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Salmonella abony and Clostridium sporogenes, due to production of lactic acid (9.80 g L-1). No signs of toxicity, bacterial translocation, hemolytic activity, were observed.

Keywords


Lactobacillus fermentum, Meconium, Probiotic,Safety

Full Text:

PDF (1,231 kB)

References


FAO/WHO, “Probiotics in food. Health and Nutritional Properties and Guidelines for Evaluation” FAO. Food and Nutrition Paper, vol. 85, pp. 1–56, 2002.

S. Fijan, Antimicrobial effect of probiotics against common pathogens (on line) in: Probiotics and Prebiotics in Human Nutrition and Health, Venketeshwer, R. (Ed.), In Tech, 2016 (https://doi.org/10.5772/63141)

J. K. Kaushik, A. Kumar, R. K. Duary, A.K. Mohanty, S. Grover, V.K. Batish, PloS One 2009 (https://doi.org/10.1371/journal.pone.0008099)

C. De Champs, N. Maroncle, D. Damien, C. Rich, C. Forestier, J. Clin. Microb. 41 (2003) 1270 (doi: 10.1128/JCM.41.3.1270-1273.2003)

M. Fakruddin, M.N. Hossain, M.M. Ahmed, BMC Complement. Altern. Med. 64 (2017) (https://doi.org/10.1186/s12906-017-1591-9)

P. Shokryazdan, C. C. Sieo, R. Kalavathy, J. B Liang, N. B Alitheen, M. F. Jahromi, Y. W. Ho, Biomed. Res. Int. 2014. (http://dx.doi.org/10.1155/2014/927268)

R. J. Boyle, R. M. Robins-Browne, M.L.K. Tang, Am. J. Clin. Nutr. 83 (2006) 1256 (https://doi.org/10.1093/ajcn/83.6.1256)

M. E. Sanders, D. Merenstein, C. A. Merrifield, R. Hutkins. Nutr. Bull. (2018) (https://doi.org/10.1111/nbu.12334)

T. Dhewa, V. Bajpai, R.K. Saxena, S. Pant, V. Mishra, Int. J. Probiotics Prebiotics. 5 (2010) 45 (www.newcenturyhealthpublishers.com)

M. van den Nieuwboer, E. Claassen, L. Morelli, F. Guarner, R. J. Brummer, Benef. Microbes 5 (2014) 45 (https://doi.org/10.3920/BM2013.0046)

D. K. Dahiya, A. K. Puniya., J. Food Sci. Technol. 54 (2017) 792 (doi: 10.1007/s13197-017-2523-x)

A.K. Al Atya, D. K. Hadiouche, R. Ravallec, A. Silvain, A. Vachee, D. Drider, Front Microbiol. 6 (2015) 227 (https://doi.org/10.3389/fmicb.2015.00227)

P. Kavitha, D. Sindhuja, M. Banumathi, Int. J. Curr. Microbiol. App. Sci. 5 (2016) 1042 (doi: http://dx.doi.org/10.20546/ijcmas.2016.504.119)

A. Lombardi, M. Gatti, L. Rizzoti, S. Torriani, C. Andrighetto, G. Giraffa, Int. Dairy J. 14 (2004) 967 (https://doi.org/10.1016/j.idairyj.2004.04.005)

V. S. Ocana, E. Bru, A. A. de Ruiz Holgado, M. E. Nader-Macias, J. Gen. Appl. Microbiol. 45 (1999a) 203 (https://doi.org/10.2323/jgam.45.203)

LJ, Harris, M. A. Daeschel, M. E. Stiles, T. R. Klaenhammer, J. Food Prot. 52 (1989) 384 (https://doi.org/10.4315/0362-028X-52.6.384)

Y. S. Huh, Y. S. Jun, Y. K. Hong, H. Song, S. Y. Lee, W. H. Hong, Process Biochem. 41 (2006) 1461

The Law on the Experimental Animal Treatment - Official Gazette of the Republic of Serbia No 41/2009.

Directive 2010/63/EU; European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes. ELI: (http://data.europa.eu/eli/dir/2010/63/oj)

European Pharmacopeia 6.0. 2008. Abnormal toxicity; p. 165.

J. S. Zhou, Q. Shu, K. J. Rutherfurd, J. Prasad, P. K. Gopal, H. S. Gill, Food Chem. Toxicol. 38 (2000) 153 (doi: 10.1016/S0278-6915(99)00154-4)

S. Oh, S. H. Kim, R. W. Worobo, J. Dairy Sci. 83 (2000) 2747 (https://doi.org/10.3168/jds.S0022-0302(00)75169-1)

D. I. Pereira, G. R. Gibson, Appl. Environ. Microbiol. 68 (2002) 4689 (doi:10.1128/AEM.68.9.4689-4693.2002)

M. Fernandez, S. Boris. C. Barbes, J. Appl. Microbiol. 94 (2003) 449 (https://doi.org/10.1046/j.1365-2672.2003.01850.x)

S. Fijan, Int. J. Environ. Res. Public Health, 11 (2014) 4745 (doi: 10.3390/ijerph110504745)

M. Mikelsaar, M. Zilmer, Microb. Ecol. Health Dis. 21 (2009) 1 (https://doi.org/10.1080/08910600902815561)

M. S. Juarez-Tomas, V. S. Ocana, B. Wiese, M. E. Nader-Macias, J. Med. Microbiol. 52 (2003) 1117 (https://doi.org/10.1099/jmm.0.05155-0)

J. Flach, M.B. van der Waal, A. F. M. Kardinaal, J. Schloesser, R. M. A. J. Ruijschop, E. Claassen, Food Sci. Tech. 4 (2018) 1452839 9 (https://doi.org/10.1080/23311932.2018.1452839)




DOI: https://doi.org/10.2298/JSC181105015Z

Copyright (c) 2019 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.797 (139 of 171 journals)
5 Year Impact Factor 0.923 (134 of 171 journals)