Optimization of phenol biodegradation by immobilized Bacillus subtilis isolated from hydrocarbons-contaminated water using the factorial design methodology

Main Article Content

Hamida Hamdi
Amina Hellal

Abstract

The ability of newly isolated bacteria, identified as Bacillus subtilis immobilized on alginate hydrogel beads, to degrade phenol was investigated under different parameters, such as phenol concentration, bead diameter and inoculums size, and was optimized using full factorial design methodology. A mathematical model that governs the degradation of phenol by the immobilized system was obtained and it fitted the experimental data very well. The model indicated that within the range of variables employed, all the parameters and their interactions influenced the biodegradation process, whereby the phenol concentration was the most significant factor. B. subtilis revealed a very high degradation activity and could be grown using phenol as the sole source of carbon. Phenol was deg­raded by the new bacteria in 8 h under the optimum conditions obtained by the desirability function: 100 mg L-1 phenol concentration, 3 mm beads diameter and 244.5 mg of cell dry per liter biomass size, with a desirability value of 91.25 %.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
H. Hamdi and A. Hellal, “Optimization of phenol biodegradation by immobilized Bacillus subtilis isolated from hydrocarbons-contaminated water using the factorial design methodology”, J. Serb. Chem. Soc., vol. 84, no. 7, pp. 679–688, Jul. 2019.
Section
Biochemistry & Biotechnology

References

A. Hazrat, Water Air Soil Poll. 213 (2010) 251 (https://doi.org/10.1007/s11270-010-0382-4)

D. Suryaman, K. Hasegawa, J. Hazard. Mater. 183 (2010) 490 (https://doi.org/10.1016/j.jhazmat.2010.07.050)

O. Ali, A. Namane, A. Hellal, J. Ind. Eng. Chem. 19 (2013) 1384 https://doi.org/10.1016/j.jiec.2012.12.045)

L. Zhang, C. Xu, Z. Chena, X. Li, P. Li, J. Hazard. Mater. 173 (2010) 168 (https://doi.org/10.1016/j.jhazmat.2009.08.059)

R. Daghrir, P. Drogui, D. Robert, J. Photochem. Photobiol. A: Chem. 238 (2012) 41 (http://dx.doi.org/10.1016/j.jphotochem.2012.04.009)

M. C. Dictor, N. Berne, O. Mathieu, A. Moussay, A. Saada, Oil Gas Sci. Technol. 58 (2003) 481( https://doi.org/10.2516/ogst:2003031)

D. Z. Chen , J. Y. Fang , Q. Shao, J. X. Ye, D. J. Ouyang, J. M .Chen, Bioresour. Technol. 139 (2013) 87 ( https://doi.org/10.1016/j.biortech.2013.04.037)

N. K. Patil, Y. Veeranagouda, M. H. Vijaykumar, S. A. Nayak, T. B. Karegoudar, Int. Biodeter. Biodegrad. 57 (2006) 82 (https://doi.org/10.1016/j.ibiod.2005.11.007)

A. S. Liffourrena, G. I. Lucchesi, Int. Biodeter. Biodegrad. 85 (2013)337 (https://doi.org/10.1016/j.ibiod.2014.02.008)

I. Ani, S. Wahidinn, Process Biochem. 41 (2006) 1117 (https://doi.org/10.1016/j.procbio.2005.12.002)

M. Mäkelä, Energ. Convers. Manage. 151 (2017) 630 (http://dx.doi.org/10.1016/j.enconman.2017.09.021)

A. Hannachi, S. Hammami, N. Raouafi, H. Maghraoui-Meherzi, J. Alloys Compd. 663 (2016) 507 (https://doi.org/10.1016/j.jallcom.2015.11.058)

D. Bingol, N. Tekin, M. Alkan, Appl. Clay Sci. 50 (2010) 315 (https://doi.org/10.1016/j.clay.2010.08.015)

Q. S. Liu, T. Zheng, P. Wang, J. Jiang, N. Li, Chem. Eng. J. 157 (2010) 348 (https://doi.org/10.1016/j.cej.2009.11.013)

R. D.Yang, A. E. Humphyrey, Biotechnol. Bioeng. 17 (1975) 1211 (https://doi.org/10.1002/bit.260170809)

J. Goupy, L. Creighton, Introduction aux plans dexpériences (Introduction to experimental design), 3rd ed., Dunod, 2006

W. Tinsson, Plans dexperience: constructions et analyses statistiques, Mathematiques et Applications (Plans of experience: constructions and statistical analyzes, Mathematics and Applications), 67. Springer-Verlag, Berlin, 2010, in French (https://doi.org/10.1007/978-3-642-11472-4)

O. B. Ayodele, J. K. Lim, B. H. Hameed, Chem. Eng. J. 197 (2012) 181 (https://doi.org/10.1016/j.cej.2012.04.053)

M. Proust, JMP® 8 Introductory Guide, 2nd ed.; Cary, NC: SAS Institute Inc., 2009

R. Y. Sheeja, T. Murugesan, J. Hazard. Mater. 89 (2002) 287 (https://doi.org/10.1016/S0304-3894(01)00319-3)

V. A. Sakkas, M. A. Islam, C. Stalikas, T. A. Albanis, J. Hazard. Mater. 175 (2010) 33 (https://doi.org/10.1016/j.jhazmat.2009.10.050)

D. Juretic, H. Kusic, N. Koprivanac, A. L. Bozic, Water Res. 46 (2012) 3074 (https://doi.org/10.1016/j.watres.2012.03.014)

J. Zhou, X. Yu, C. Ding, Z. Wang, Q. Zhou, H. Pao, W. Cai, J. Environ. Sci. 23 (2011) 22 (https://doi.org/10.1016/S1001-0742(10)60369-5)

S. Saadat, A. Karimi-Jashni, Chem. Eng. J. 173 (2011) 743 (https://doi.org/10.1016/j.cej.2011.08.042)

W. Lazli, D. Hank, S. Zeboudj, A. Namane, A. Hellal, Desalin. Water Treat. 57 (2016) 6044 (https://doi.org/10.1080/19443994.2015.1004112)

A. Salhi, A. Aarfane, S. Tahiri, L. Khamliche, M. Bensitel, F. Bentiss, M. El Krati, Mediterr. J. Chem. 4 (2015) 59 (http://dx.doi.org/10.13171/mjc.4.1.2015.16.01.20.30/salhi)

A. S. Zidan, O. A. Sammour, M. A. Hammad, N. A. Megrab, M. J. Habib, M. A. Khan, Int. J. Pharm. 96 (2007) 2409 (https://doi.org/10.1002/jps.20824)

L. V. Candioti, M. M. De Zan, M. S. Cámara, H. C. Goicoechea, Talanta 124 (2014) 123 (http://dx.doi.org/10.1016/j.talanta.2014.01.034).