Efficient removal of Malachite Green from aqueous solution by adsorption on carbon nanotubes modified with ZnFe2O4 nanoparticles

Main Article Content

Shiva Dehghan Abkenar
Morassa Hassannezhad
Morteza Hosseini
Mohammad Reza Ganjali


In this study, multiwall carbon nanotubes modified with spinel zinc ferrite nanoparticle (ZnFe2O4/MWCNTs) were used as a solid phase adsorbent for the removal of Malachite Green (MG) from aqueous media. The synthesized nanocomposite was characterized by different methods, such as Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and X-ray diffraction (XRD). Batch adsorption experiments to determine the optimal adsorption conditions and different factors that influence the adsorption efficiency (i.e., pH, amount of adsorbent, contact time, and the initial concentration of MG) were also evaluated and optimized. The data were satisfactorily fitted to the Langmuir model and a maximum adsorption capacity of 116.2 mg g-1 was obtained at a pH of 7.5. In addition, adsorption kinetics studies were performed. The adsorption of the model dye (MG) was found to reach equilibrium after 60 min, following a pseudo-second-order kinetic model. Furthermore, an external magnetic field could easily separate the nano­particles from water with a high separation efficiency.


Download data is not yet available.


Metrics Loading ...

Article Details

How to Cite
S. Dehghan Abkenar, M. Hassannezhad, M. Hosseini, and M. R. Ganjali, “Efficient removal of Malachite Green from aqueous solution by adsorption on carbon nanotubes modified with ZnFe2O4 nanoparticles”, J. Serb. Chem. Soc., vol. 84, no. 7, pp. 701–712, Jul. 2019.
Physical Chemistry


F. Naseeruteen, N. S. Abdul Hamid, F. Bukhari, M. Suah, W. S. Wan Ngah, F. Shimal Mehamod, Int. J. Biol. Macromol.107 (2018) 1270 (https://doi.org/10.1016/j.ijbiomac.2017.09.111)

M. Amiri, M. Salavati-Niasari, A. Akbari, T. Gholami, Int. J. Hydrogen Energy 42 (2017) 24846 (https://doi.org/10.1016/j.ijhydene.2017.08.077)

M. Wawrzkiewicz, Solvent Extr. Ion Exc. 30 (2012) 507 (https://doi.org/10.1080/07366299.2011.639253)

G. Crini, Bioresour. Technol. 90 (2003) 193


C. D. Shuang, P. H. Li, A. M. Li, Q. Zhou, M. C. Zhang, Y. Zhou, Water Res. 46 (2012) 4417 (https://doi.org/10.1016/j.watres.2012.05.052)

S. D. Abkenar, M. Khoobi, R. Tarasi, M. Hosseini, A. Shafiee, M. R. Ganjali, J. Environ. Eng. 141 (2015) 04014049 (https://ascelibrary.org/doi/10.1061/(ASCE)EE.1943-7870.0000878)

B. Maddah, S. S. Javadi, A. Mirzaei, M. Rahimi-Nasrabadi, J. Liq. Chromatogr. Relat. Technol. 38 (2015) 208 (https://doi.org/10.1080/10826076.2014.896820)

F. Salehnia, M. Hosseini, M.R. Ganjali, Microchim. Acta 184 (2017) 2157 (https://doi.org/ 10.1007/s00604-017-2130-6)

H. R. Naderi, M. R. Ganjali, P. Norouzi, Int. J. Electrochem. Sci. 11 (2016) 4267 (https://doi.org/10.20964/2016.06.60)

M. Rahimi-Nasrabadi, S. M. Pourmortazavi, M. R. Ganjali, P. Norouzi, F. Faridbod, M. SadeghpourKarimi, J. Mater. Sci. Mater. Electron. 28 (2017) 3325 (https://doi.org/10.1007/s10854-016-5926-y)

S. C. Wei, S. Fan, C. W. Lien, B. Unnikrishnan, Y. S. Wang, H. W. Chu, C. C. Huang, P. H. Hsu, H. T. Chang, Anal. Chim. Acta 1003 (2018) 42 (https://doi.org/10.1016/j.aca.2017.11.076)

S. Srivastava, R. Sinha, D. Roy, Aquat. Toxicol. 66 (2004) 319 (https://doi.org/10.1016/j.aquatox.2003.09.008)

M. Sundararajan, S. K. Ghosh, J. Phys. Chem., A 115 (2011) 6732 (https://doi.org/10.1021/jp203723t)

F. Belloni, C. Kütahyali, V. V. Rondinella, P. Carbol, T. Wiss, A. Mangione, Environ. Sci. Technol. 43 (2009) 1250 (https://doi.org/10.1021/es802764g)

L. Tan, Q. Liu, X. Jing, J. Liu, D. Song, S. Hu, L. Liu, J. Wang, Chem. Eng. J. 273 (2015) 307 (https://doi.org/10.1039/C7RA07260K)

C. Hong Chen, Y. H. Liang, W. D. Zhang, J. Alloy Compd. 501 (2010) 168 (https://doi.org/10.1039/C1RA00260K)

M. Hosseini, M.Aghazadeh, M. R. Ganjali, New J. Chem. 41 (2017) 12678 (http://dx.doi.org/10.1039/C7NJ02082A)

M. Arvand, Sh. Hemmati, Sensors Actuators, B 238 (2017) 346 (https://doi.org/10.1016/j.snb.2016.07.066)

D. S. Mathew, R. S. Juang, Chem. Eng. J. 129 (2007) 51 (http://dx.doi.org/10.1016/j.cej.2006.11.001)

B. Unal, M. Senel, A. Baykal, H. Sözeri, Curr. Appl. Phys. 13 (2013) 1404 (https://doi.org/10.1016/j.cap.2013.04.020)

A. A. Ensafi, B. Saeid, B. Rezaei, A. R. Allafchian, Ionics 21 (2015) 1435 (https://doi.org/10.1007/s11581-014-1291-0)

L. AsadiKafshgari, M. Ghorbani, A. Azizi, S. Agarwald, V. Kumar Gupta, J. Mol. Liquids 233 (2017) 370 (https://doi.org/10.1016/j.molliq.2017.03.047)

M. B. Gholivand, A. Akbari, M. Faizi, F. Jafari, J. Electroanal. Chem. 796 (2017) 17 (https://doi.org/10.1016/j.jelechem.2017.05.004)

A. Hirsch, Angew. Chem. Int. Ed. 41 (2002)1853 (https://doi.org/10.1002/1521-3773(20020603)41:11<1853::AID-ANIE1853>3.0.CO;2-N)

H. Fayazfar, A. Afshar, A. Dolati, Mater. Sci. Appl. 4 (2013) 667 (http://dx.doi.org/10.4236/msa.2013.411083)

M. Zahraei, A. Monshi, D. Shahbazi-Gahrouei, M. Amirnasr, B. Behdadfar, M. Rostami, J. Nanostruct. 5 (2015) 77 (https://doi.org/10.7508/jns.2015.02.001)

B. H. Hameed, M. I. El-Khaiary, J. Hazard. Mater. 159 (2008) 574 (https://doi.org/10.1016/j.jhazmat.2008.02.054)

S. EngLagergren, Handlingar 24 (1898) 1.

Y. S. Ho, G. McKay, Chem. Eng. J. 70 (1998) 115 (https://doi.org/10.1016/S0923-0467(98)00076-1)

Y. Zhou, Y. Min, H. Qiao, Q. Huang, E. Wang, T. Ma, Int. J. Biolog. Macromol. 74 (2014) 271 (https://doi.org/10.1016/j.ijbiomac.2014.12.020)

L. Ai, H. Huang, Z. Chen, X. Wei, J. Jiang, Chem. Eng. J. 156 (2010) 243 (https://doi.org/10.1016/j.cej.2009.08.028)

M. Ghaedi, F. Nasiri Azad, K. Dashtian, S. Hajati, A. Goudarzi, M. Soylak, Spectrochim. Acta, A 167 (2016) 157 (https://doi.org/10.1016/j.saa.2016.05.025)

X. Zhang, H. Yu, H. Yang, Y. Wan, H. Hu, Z. Zhai, J. Qin, J. Colloid Interf. Sci. 437 (2015) 277 ( https://doi.org/10.1016/j.jcis.2014.09.048 )

E. Sharifpour, H. Z. Khafri, M. Ghaedi, A. Asfaram, R. Jannesar, Ultrason. Sonochem. 40 (2018) 373(https://doi.org/10.1016/j.ultsonch.2017.07.030)

F. Bouaziza, M. Koubaab, F. Kallela, R. EllouzGhorbela, S. EllouzChaabouni, Int. J. Biolog. Macromol. 105 (2017) 56 (https://doi.org/10.1016/j.ijbiomac.2017.06.106)

I. Langmuir, J. Am. Chem. Soc. 38 (1916) 2221(https://doi.org/10.1021/ja02268a002)

H. M. F. Freundlich, J. Phys. Chem. 57 (1906) 385.

F. Haghseresht, G. Lu, Energy Fuels 12 (1998) 1100 (https://doi.org/10.1021/ef9801165).