Spectroscopic (FTIR, UV-Vis and NMR), theoretical investigation and molecular docking of substituted 1,8-dioxodecahydroacridine derivatives

Krishna Kant Yadav, Abhishek Kumar, Sanchari Begam, Khondekar Nurjamal, Amarendra Kumar, Goutam Brahmchari, Neeraj Misra

Abstract


Recently, substituted 1, 8-dioxodecahydroacridine derivatives have been investigated and found to possess a wide variety of biological and phar­macological activities. Two of these biologically relevant N-heterocyclic scaf­folds 2-(9-(4-me­th­oxyphenyl)-3,3,6,6-tetramethyl-1,8-dioxo-1,2,3,4,5,6,7,8-oc­ta­hydroacridin-10(9H)--yl)succinic acid (MTDOSA) and 2-(3,3,6,6-tetra­methyl-9-(4-nitrophenyl)-1,8-dioxo-1,2,3,4,5,6,7,8-octahydroacridin-10(9H)-yl)suc­ci­nic acid (NTDOSA) have been studied in ground and first excited state using DFT method employingB3LYP/6-311++G(d,p) level of theory. Quantum che­mical calculations of geometrical structure and vibrational wavenumbers of MTDOSA andNTDOSA were carried out using DFT method. The expe­ri­men­tal FT-IR spectra of the compounds are recorded in the range 4000-400 cm-1 and comprehensively interpreted on the basis ofpotential energy distribution. The global reactivity descriptors are calculated and discussed. Moreover, 1H and 13C NMR spectra have been calculated by using the gauge independent atomic orbital method and compared with experimental spectra. The docking studies reveal that the compounds MTDOSA and NTDOSA have strong binding affinity toward target protein 5KLH. Thus, the compounds have a possible use as an antileishmanial drug.


Keywords


quantum chemical study; spectroscopy; global reactivity descriptors; antileishmanial drug

Full Text:

PDF (2,625 kB)

References


C. Santelli-Rouvier, B. Pradines, M. Berthelot, D. Parzy, J. Barbe, Eur. J. Med. Chem.39 (2004) 735 (https://dx.doi.org/10.1016/j.ejmech.2004.05.007)

T. L. Su, Y.W. Lin, T.C. Chou, X. Zhang, V. A. Bacherikov, C.H. Chen, L. F. Liu, T.J. Tsai, J. Med. Chem.49 (2006) 3710 (https://dx.doi.org/10.1021/jm060197r)

S. A. Gamage, D. P. Figgitt, S. J. Wojcik, R. K. Ralph, A. Ransijn, J. Mauel, V. Yardley, D. Snowdon, S. L. Croft, W. A. Denny, J. Med. Chem. 40 (1997) 2634 (https://dx.doi.org/10.1021/jm970232h)

R. A. Janis, D. J. Triggle, J. Med. Chem. 26 (1983) 775 (https://dx.doi.org/10.1021/jm00360a001)

M. Kaya, Y. Yıldırır, L. Terker, J. Heterocyclic Chem. 46 (2009) 294 (https://dx.doi.org/10.1002/jhet.45)

X.-S. Wang, M.-M. Zhang, Z.-S. Zeng, D.-Q. Shi, S.-J. Tu, X.-Y. Wei, Z.-M. Zong, Tetrahedron Lett. 46 (2005)7169 (https://dx.doi.org/10.1016/j.tetlet.2005.08.091)

B. Banerjee, G. Brahmachari, J. Chem. Res. 38 (2014)745 (https://dx.doi.org/10.3184/174751914X14177132210020)

G. Brahmachari, S. Begam, K. Nurjamal, ChemistrySelect, 2 (2017) 331 (https://dx.doi.org/10.1002/slct.201700265)

Gaussian 09, Revision A.1, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2009

A. P. Scott, L. Radom, J. Phys. Chem.100 (1996) 16502 (https://dx.doi.org/10.1021/jp960976r)

P. Pulay, G. Fogarasi, G. Pongor, J. E. Boggs, A. Vargha, J. Am. Chem. Soc. 105 (1983) 7037 (https://dx.doi.org/10.1021/ja00362a005)

M. H. Jamroz, Spectrochim. Acta A 114 (2013) 220 (https://doi.org/10.1016/j.saa.2013.05.096)

M. Ladd, Introduction to Physical Chemistry, Third ed., Cambridge University Press, Cambridge, U.K. 1998 ISBN 0521480000

F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, R. Taylor, J. Chem. Soc. Perkin Trans. II 12 (1987) S1 (https://dx.doi.org/10.1039/P298700000S1)

D. Michalska, D. C. Bienko, A.J.Abkowicz-Bienko, Z. Latajaka, J. Phys. Chem. 100 (1996) 17786 (https://dx.doi.org/10.1021/jp961376v)

R. L. Pecsok, L. D. Shield, I. C. McWillam, Modern Methods of Chemical Analysis, Wiley, New York, U.S.A. 1976 ISBN 10: 0471676624/ISBM 13: 9780471676621.

P. K. Chattaraj, U. Sarkar, D.R. Roy, Chem. Rev. 106 (2006) 2065 (https://dx.doi.org/10.1021/cr040109f)

P. A. Johnson, L. J. P. Bartolotti, W. Ayers, T. Fievez, P. Geerlings, Charge Density and Chemical Reactions: A Unified View from Conceptual DFT, in Modern Charge Density Analysis,C.Gatti, P. Macchi (Eds.), Springer, New York, 2012 (https://dx.doi.org/10.1007/978-90-481-3836-4_21)

R. G. Parr, R. A. Donnelly, M. Levy, W. E. Palke, J. Chem. Phys. 68 (1978) 3801 (https://dx.doi.org/10.1063/1.436185)

R. G. P earson, Inorg. Chim. Acta 240 (1995) 93 (https://dx.doi.org/10.1016/0020-1693(95)04648-8)

P. W. Ayers, R. G. Parr, R. G. Pearson, J. Chem. Phys. 124 (2006) 194107 (https://dx.doi.org/10.1063/1.2196882)

P. W. Ayers, Faraday Discuss. 135 (2007) 161 (https://dx.doi.org/10.1039/B606877D)

R. G. Parr, L. Szentpaly, S. Liu, J. Am. Chem. Soc. 121 (1999) 1922 (https://dx.doi.org/10.1021/ja983494x)

S. B. Liu, Electrophilicity, in Chemical Reactivity Theory: A Density Functional View, P. K. Chattaraj, Ed., chapter 13, Taylor & Francis, Boca Raton, Fla, USA, 2009,p. 179

R. Parthasarathi, J. Padmanabhan , V. Subramanian, B. Maiti, P. K. Chattaraj, Current Science 86 (2004) 535 (https://www.currentscience.ac.in/Downloads/article_id_086_04_0535_0542_0.pdf)

J. A. War, K. Jalaja, Y. S. Mary, C. Y. Panicker, S. Armakovic, S. J. Armakovic, S. K. Srivastava, C. Van Alsenoy, J. Mol. Struct. 1129 (2017) 72 (https://dx.doi.org/10.1016/j.molstruc.2016.09.063)

I. Fleming, Frontier Orbitals and Organic Chemical Reactions, John Wiley and Sons, New York, USA 1976ISBN 978-0-470-74660-8 (H/B), 978-0-470-74659-2 (P/B)

E. Scrocco, J. Tomasi, Electronic Molecular Structure, Reactivity and Intermolecular Forces: An Euristic Interpretation by Means of Electrostatic Molecular Potentials in P. Lowdin (Ed.), Advances in Quantum Chemistry, Academic Press, New York, U.S.A. 1978 (https://dx.doi.org/10.1016/S0065-3276(08)60236-1)

A. Grosdidier, V. Zoete, O. Michielin, Nucleic Acids Res. 39 (2011) 270 (https://dx.doi.org/10.1093/nar/gkr366)

R. Ramaswamy, S. Goomeshi Nobary, B. A. Eyford, T. W. Pearson, M. J. Boulanger, Protein Sci. 25 (2016) 2297 (http://www.rcsb.org/pdb/explore/explore.do?structureId=5KLH)

E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, T. E. Ferrin, J. Comput. Chem. 25 (2004) 1605 (https://dx.doi.org/10.1002/jcc.20084)




DOI: https://doi.org/10.2298/JSC181228102Y

Copyright (c) 2019 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)