Spectroscopic (FTIR, UV–Vis and NMR), theoretical investigation and molecular docking of substituted 1,8-dioxodecahydroacridine derivatives

Krishna Kant Yadav, Abhishek Kumar, Sanchari Begam, Khondekar Nurjamal, Amarendra Kumar, Goutam Brahmchari, Neeraj Misra


Recently, substituted 1,8-dioxodecahydroacridine derivatives have been investigated and found to possess a wide variety of biological and phar­macological activities. Two of these biologically relevant N-heterocyclic scaf­folds, 2-(9-(4-me­th­oxyphenyl)-3,3,6,6-tetramethyl-1,8-dioxo-1,2,3,4,5,6,7,8-oc­ta­hydroacridin-10(9H)-yl)succinic acid (MTDOSA) and 2-(3,3,6,6-tetra­methyl-9-(4-nitrophenyl)-1,8-dioxo-1,2,3,4,5,6,7,8-octahydroacridin-10(9H)-yl)­suc­ci­nic acid (NTDOSA), have been studied in ground and first excited state using DFT method employing B3LYP/6-311++G(d,p) level of theory. Quan­tum che­mical calculations of geometrical structure and vibrational wave­numbers of MTDOSA and NTDOSA were carried out using DFT method. The expe­ri­men­tal FT-IR spectra of the compounds were recorded in the range 4000–400 cm-1 and comprehensively interpreted on the basis of potential energy distribution. The global reactivity descriptors are calculated and discussed. Moreover, 1H- and 13C-NMR spectral data have been calculated using the gauge independent atomic orbital method and compared with experimental spectra. The docking studies reveal that the compounds MTDOSA and NTDOSA have strong binding affinity toward the target protein 5KLH. Thus, the compounds have a possible use as an antileishmanial drug.


quantum chemical study; spectroscopy; global reactivity descriptors; antileishmanial drug


C. Santelli-Rouvier, B. Pradines, M. Berthelot, D. Parzy, J. Barbe, Eur. J. Med. Chem. 39 (2004) 735 (https://dx.doi.org/10.1016/j.ejmech.2004.05.007)

T. L. Su, Y. W. Lin, T. C. Chou, X. Zhang, V. A. Bacherikov, C. H. Chen, L. F. Liu, T. J. Tsai, J. Med. Chem. 49 (2006) 3710 (https://dx.doi.org/10.1021/jm060197r)

S. A. Gamage, D. P. Figgitt, S. J. Wojcik, R. K. Ralph, A. Ransijn, J. Mauel, V. Yardley, D. Snowdon, S. L. Croft, W. A. Denny, J. Med. Chem. 40 (1997) 2634 (https://dx.doi.org/10.1021/jm970232h)

R. A. Janis, D. J. Triggle, J. Med. Chem. 26 (1983) 775 (https://dx.doi.org/10.1021/jm00360a001)

M. Kaya, Y. Yıldırır, L. Terker, J. Heterocycl. Chem. 46 (2009) 294 (https://dx.doi.org/10.1002/jhet.45)

X.-S. Wang, M.-M. Zhang, Z.-S. Zeng, D.-Q. Shi, S.-J. Tu, X.-Y. Wei, Z.-M. Zong, Tetrahedron Lett. 46 (2005) 7169 (https://dx.doi.org/10.1016/j.tetlet.2005.08.091)

B. Banerjee, G. Brahmachari, J. Chem. Res. 38 (2014)745 (https://dx.doi.org/10.3184/174751914X14177132210020)

G. Brahmachari, S. Begam, K. Nurjamal, ChemistrySelect 2 (2017) 331 (https://dx.doi.org/10.1002/slct.201700265)

Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford CT, 2009

A. P. Scott, L. Radom, J. Phys. Chem. 100 (1996) 16502 (https://dx.doi.org/10.1021/jp960976r)

P. Pulay, G. Fogarasi, G. Pongor, J. E. Boggs, A. Vargha, J. Am. Chem. Soc. 105 (1983) 7037 (https://dx.doi.org/10.1021/ja00362a005)

M. H. Jamroz, Spectrochim. Acta, A 114 (2013) 220 (https://doi.org/10.1016/j.saa.2013.05.096)

M. Ladd, Introduction to Physical Chemistry, 3rd ed., Cambridge University Press, Cambridge, 1998 (ISBN 0521480000)

F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, R. Taylor, J. Chem. Soc., Perkin Trans. 2-12 (1987) S1 (https://dx.doi.org/10.1039/P298700000S1)

D. Michalska, D. C. Bienko, A.J.Abkowicz-Bienko, Z. Latajaka, J. Phys. Chem. 100 (1996) 17786 (https://dx.doi.org/10.1021/jp961376v)

R. L. Pecsok, L. D. Shield, I. C. McWillam, Modern Methods of Chemical Analysis, Wiley, New York, 1976 (ISBN 10: 0471676624/ISBM 13: 9780471676621)

P. K. Chattaraj, U. Sarkar, D.R. Roy, Chem. Rev. 106 (2006) 2065 (https://dx.doi.org/10.1021/cr040109f)

P. A. Johnson, L. J. P. Bartolotti, W. Ayers, T. Fievez, P. Geerlings, in Modern Charge Density Analysis, C. Gatti, P. Macchi Eds., Springer, New York, 2012 (https://dx.doi.org/10.1007/978-90-481-3836-4_21)

R. G. Parr, R. A. Donnelly, M. Levy, W. E. Palke, J. Chem. Phys. 68 (1978) 3801 (https://dx.doi.org/10.1063/1.436185)

R. G. Pearson, Inorg. Chim. Acta 240 (1995) 93 (https://dx.doi.org/10.1016/0020-1693(95)04648-8)

P. W. Ayers, R. G. Parr, R. G. Pearson, J. Chem. Phys. 124 (2006) 194107 (https://dx.doi.org/10.1063/1.2196882)

P. W. Ayers, Faraday Discuss. 135 (2007) 161 (https://dx.doi.org/10.1039/B606877D)

R. G. Parr, L. Szentpaly, S. Liu, J. Am. Chem. Soc. 121 (1999) 1922 (https://dx.doi.org/10.1021/ja983494x)

S. B. Liu, in Chemical Reactivity Theory: A Density Functional View, P. K. Chattaraj, Ed., Ch. 13, Taylor & Francis, Boca Raton, FL, 2009,p. 179

R. Parthasarathi, J. Padmanabhan , V. Subramanian, B. Maiti, P. K. Chattaraj, Curr. Sci. 86 (2004) 535 (https://www.currentscience.ac.in/Downloads/article_id_086_04_0535_0542_0.pdf)

J. A. War, K. Jalaja, Y. S. Mary, C. Y. Panicker, S. Armakovic, S. J. Armakovic, S. K. Srivastava, C. Van Alsenoy, J. Mol. Struct. 1129 (2017) 72 (https://dx.doi.org/10.1016/j.molstruc.2016.09.063)

I. Fleming, Frontier Orbitals and Organic Chemical Reactions, John Wiley and Sons, New York, 1976 (ISBN 978-0-470-74660-8 (H/B), 978-0-470-74659-2 (P/B))

E. Scrocco, J. Tomasi, in Advances in Quantum Chemistry, P. Lowdin, Ed., Academic Press, New York, 1978 (https://dx.doi.org/10.1016/S0065-3276(08)60236-1)

A. Grosdidier, V. Zoete, O. Michielin, Nucleic Acids Res. 39 (2011) 270 (https://dx.doi.org/10.1093/nar/gkr366)

R. Ramaswamy, S. Goomeshi Nobary, B. A. Eyford, T. W. Pearson, M. J. Boulanger, Protein Sci. 25 (2016) 2297 (http://www.rcsb.org/pdb/explore/explore.do?structureId=5KLH)

E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, T. E. Ferrin, J. Comput. Chem. 25 (2004) 1605 (https://dx.doi.org/10.1002/jcc.20084).

DOI: https://doi.org/10.2298/JSC181228102Y

Copyright (c) 2019 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

5 Year Impact Factor 1.023
138 of 177 journals)