Hysteresis of conductivity in a micellar surfactant solution near the Krafft point pointt point
Main Article Content
Abstract
The specific conductivity of aqueous cetyltrimethylammonium bromide solutions has been investigated below and above the critical micelle concentration, in order to elucidate slow structural changes. Around the Krafft temperature (≈25 °C) the monomer solubility reaches the critical micelle concentration, and a significant increase in charge transport is recorded. When a temperature decreases, the micellar surfactant solution passes through the Krafft temperature, and a hysteresis phenomenon is observed with the appearance of crystals in a solution. We have scrutinized the conditions leading to this hysteresis and quantified some of the relevant parameters. We also outline a simple procedure that allows the "erasure" of such structural memory effects, which are potentially detrimental to the formation of adsorbed self-assembled monolayers from solution.
Downloads
Metrics
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
. Santos, B. Medronho, T. Santos, F. E. Antunes, Preventive and Personalised Medicine 4, Springer Science and Business Media, Dordrecht, 2013, p. 35 (http://doi.org.10.1007/978-94-007-6010-3_2)
S. Shimizu, P. Pires, W. Loh, O. A. Seoud, Colloid Polym. Sci. 282 (2004) 1026 (https://doi.org/10.1007/s00396-003-1028-5)
H. Demissie, R. Duraisamy, Int. J. Sci. Innov. Res. 5 (2016) 208 http://www.jsirjournal.com/Vol5_Issue6_03.pdf
V. V. Yaminsky, K. B. Yaminskaya, Langmuir 11 (1995) 936 (https://doi.org/10.1021/la00003a042)
S. Paria, K. C. Khilarm, Adv. Colloid Interface Sci. 110 (2004) 75 (https://doi.org/10.1016/j.cis.2004.03.001)
T. Wangchareansak, V. S. J. Craig, S. M. Notley, Langmuir 29 (2013) 14748 (https://doi.org/10.1021/la403439r)
B. G. Sharma, S. Basu, M. M. Sharma, Langmuir 12 (1996) 6506 (https://doi.org/10.1021/la960537j)
S. Inoue, T. Uchihashi, D. Yamamoto, T. Ando, Chem. Commun. 47 (2011) 4974 (https://doi.org/10.1039/C0CC05762B)
S. Manne, H.E. Gaub, Science 270 (1995) 1480 (https://doi.org/10.1126/science.270.5241.1480)
E. J. Wanless,W. A. Ducker, Langmuir 15 (1999) 160 (https://doi.org/10.1021/la960861e)
F. Hubert, F. Testard, O. Spalla, Langmuir 24 (2008) 9219 (https://doi.org/10.1021/la801711q)
P. Kekicheff, J. Iss, P. Fontaine, A. Johner, Phys. Rev. Lett. 120 (2018) 118001 (https://doi.org/10.1103/PhysRevLett.120.118001)
Y. L. Chen, J. N. Israelachvili, J. Phys. Chem. 96 (1992) 7752 (https://doi.org/10.1021/jp970238i)
A.Terzić, L.Pavlović, Z. Radojević, V. Pavlović, V. Mitić, Int. J. Appl. Ceram. Technol. 12 (2015) 133 (https://doi.org/10.1111/ijac.12135)
V. Paunović, V. Mitić, V. Pavlović, M. Miljković, Lj. Živković, Proc. Appl. Ceram. 4 (2010) 253 (http://www.tf.uns.ac.rs/publikacije/PAC/pdf/PAC%2010%2004.pdf)
F. Speranza, G. A. Pilkington, T. G. Dane, P.T. Cresswell, P. Li, R. M. J. Jacobs, T. Arnold, L. Bouchenoire, R. K. Thomasb, W. H. Briscoe, Soft Matter 9 (2013) 7028 (https://doi.org/10.1039/C3SM50336D)
J. Manojlovic, PhD Thesis, ETH, Zuerich, 2006
P. Ekwall, L. Mandell, P. Solyom, J. Colloid Interface Sci. 35 (1971) 519 (https://doi.org/10.1016/0021-9797(71)90210-4)
P.C. Hiemenz, R. Rajagopalan, Principles of colloids and surface chemistry, Marcel Dekker, New York, 1997
L. M. Bergström, I. Grillo, Soft Matter 10 (2014) 9362 (https://doi.org/10.1039/C4SM01800A)
P. S. Goyal, S. V. G. Menon, B. A. Dasannacharya, V. Rajagopalan, Chem. Phys. Lett. 211 (1993) 559 (https://doi.org/10.1016/0009-2614(93)80143-D)
L. Coppola, R. Gianferri, I. Nicotera, C. Oliviero, G.A. Ranieri, Phys. Chem. Chem. Phys. 6 (2004) 2364 (https://doi.org/10.1039/b316621j)
V. Patel, N. Dharaiya, D. Ray, V. K. Aswal, P. Bahadur, Colloids Surfaces, A: Physicochem. Eng. Aspects 455 (2014) 67 (https://doi.org/10.1016/j.colsurfa.2014.04.025)
A. G. Perez, J.L. Castillo, J. Czapkiewicz, J.R. Rodrıguez, Colloid Polym. Sci. 280 (2002) 503 (https://doi.org/10.1007/s00396-001-0635-2)
A. Kalogirou, L. N. Gergidis, O. Moultos, C. Vlahos, Phys. Rev., E 92 (2015) 052601 (https://doi.org/10.1103/PhysRevE.92.052601)
P. S. Goyal, S. V. G. Menon, B. A. Dasannacharya, V. Rajagopalan, Chem. Phys. Lett. 211 (1993) 559 (https://doi.org/10.1016/0009-2614(93)80143-D)
D. Myers, Surface, interfaces, and colloids, Wiley, New York, 1999
M. Fujii, B. Y. Li, K. Fukada, T. Kato, T. Seimiya, Langmuir 17 (2001) 1138 (https://doi.org/10.1021/la001007x)
S. Perkin, N. Kampf, J. Klein, J. Phys. Chem., B 109 (2005) 3832 (https://doi.org/10.1021/jp047746u)
L. Cantu, M. Corti, E. Favero, E. Digirolamo, A. Raudino, J. Phys. II 6 (1996) 1067 (https://doi.org/10.1051/jp2:1996116)
L. Nianbing, L. Shaopu, L. Hongqun, Anal. Lett. 35 (2002) 1229 (https://doi.org/10.1081/AL-120005975)
B. L. Bales, M. Benrraou, R. Zana, J. Phys. Chem., B 106 (2002) 9033 (https://doi.org/10.1021/jp021297l)
H. Hirata, A. Ohira, N. Iimura, Langmuir 12 (1996) 6044 (https://doi.org/10.1021/la9603535)
J. Manojlovic, Thermal Sci. 6 (2012) S633 (https://doi.org/10.2298/TSCI120427197M)
M. Jalali-Heravi, E. Konouz, Internet Electron. J. Mol. Des. 1 (2002) 410 (https://pdfs.semanticscholar.org/dc54/70ab20db771b7aa6e8bf1cb6898b87132968.pdf)
E. Cappelaere, R. Cressely, J. P. Decruppe, Colloids Surfaces, A: Physicochem. Eng. Aspects 104 (1995) 353 (https://doi.org/10.1016/0927-7757(95)03332-2)
C. Vautier-Giongo, B.L. Bales, J. Phys. Chem., B 107 (2003) 5398 (https://doi.org/10.1021/jp0270957)
B. L. Bales, M. Benrraou, R. Zana, J. Phys. Chem., B 106 (2002) 9033 (https://doi.org/10.1021/jp021297l)
Y. Moroi, Micelles: theoretical and applied aspects, Springer US, New York, 1992, ISBN 978-1-4899-0700-4
R. Ball, A. D. J. Haymet, Phys. Chem. Chem. Phys. 3 (2001) 4753 (https://doi.org/10.1039/B104483B).