Hysteresis of conductivity in a micellar surfactant solution near the Krafft point pointt point

Main Article Content

Jelena Ž. Manojlović

Abstract

The specific conductivity of aqueous cetyltrimethylammonium bro­mide solutions has been investigated below and above the critical micelle con­centration, in order to elucidate slow structural changes. Around the Krafft temperature (≈25 °C) the monomer solubility reaches the critical micelle con­centration, and a significant increase in charge transport is recorded. When a temperature decreases, the micellar surfactant solution passes through the Krafft temperature, and a hysteresis phenomenon is observed with the appear­ance of crystals in a solution. We have scrutinized the conditions leading to this hysteresis and quantified some of the relevant parameters. We also outline a simple procedure that allows the "erasure" of such structural memory effects, which are potentially detrimental to the formation of adsorbed self-assembled monolayers from solution. 

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
J. Ž. Manojlović, “Hysteresis of conductivity in a micellar surfactant solution near the Krafft point pointt point”, J. Serb. Chem. Soc., vol. 85, no. 1, pp. 67–78, Feb. 2020.
Section
Physical Chemistry

References

. Santos, B. Medronho, T. Santos, F. E. Antunes, Preventive and Personalised Medicine 4, Springer Science and Business Media, Dordrecht, 2013, p. 35 (http://doi.org.10.1007/978-94-007-6010-3_2)

S. Shimizu, P. Pires, W. Loh, O. A. Seoud, Colloid Polym. Sci. 282 (2004) 1026 (https://doi.org/10.1007/s00396-003-1028-5)

H. Demissie, R. Duraisamy, Int. J. Sci. Innov. Res. 5 (2016) 208 http://www.jsirjournal.com/Vol5_Issue6_03.pdf

V. V. Yaminsky, K. B. Yaminskaya, Langmuir 11 (1995) 936 (https://doi.org/10.1021/la00003a042)

S. Paria, K. C. Khilarm, Adv. Colloid Interface Sci. 110 (2004) 75 (https://doi.org/10.1016/j.cis.2004.03.001)

T. Wangchareansak, V. S. J. Craig, S. M. Notley, Langmuir 29 (2013) 14748 (https://doi.org/10.1021/la403439r)

B. G. Sharma, S. Basu, M. M. Sharma, Langmuir 12 (1996) 6506 (https://doi.org/10.1021/la960537j)

S. Inoue, T. Uchihashi, D. Yamamoto, T. Ando, Chem. Commun. 47 (2011) 4974 (https://doi.org/10.1039/C0CC05762B)

S. Manne, H.E. Gaub, Science 270 (1995) 1480 (https://doi.org/10.1126/science.270.5241.1480)

E. J. Wanless,W. A. Ducker, Langmuir 15 (1999) 160 (https://doi.org/10.1021/la960861e)

F. Hubert, F. Testard, O. Spalla, Langmuir 24 (2008) 9219 (https://doi.org/10.1021/la801711q)

P. Kekicheff, J. Iss, P. Fontaine, A. Johner, Phys. Rev. Lett. 120 (2018) 118001 (https://doi.org/10.1103/PhysRevLett.120.118001)

Y. L. Chen, J. N. Israelachvili, J. Phys. Chem. 96 (1992) 7752 (https://doi.org/10.1021/jp970238i)

A.Terzić, L.Pavlović, Z. Radojević, V. Pavlović, V. Mitić, Int. J. Appl. Ceram. Technol. 12 (2015) 133 (https://doi.org/10.1111/ijac.12135)

V. Paunović, V. Mitić, V. Pavlović, M. Miljković, Lj. Živković, Proc. Appl. Ceram. 4 (2010) 253 (http://www.tf.uns.ac.rs/publikacije/PAC/pdf/PAC%2010%2004.pdf)

F. Speranza, G. A. Pilkington, T. G. Dane, P.T. Cresswell, P. Li, R. M. J. Jacobs, T. Arnold, L. Bouchenoire, R. K. Thomasb, W. H. Briscoe, Soft Matter 9 (2013) 7028 (https://doi.org/10.1039/C3SM50336D)

J. Manojlovic, PhD Thesis, ETH, Zuerich, 2006

P. Ekwall, L. Mandell, P. Solyom, J. Colloid Interface Sci. 35 (1971) 519 (https://doi.org/10.1016/0021-9797(71)90210-4)

P.C. Hiemenz, R. Rajagopalan, Principles of colloids and surface chemistry, Marcel Dekker, New York, 1997

L. M. Bergström, I. Grillo, Soft Matter 10 (2014) 9362 (https://doi.org/10.1039/C4SM01800A)

P. S. Goyal, S. V. G. Menon, B. A. Dasannacharya, V. Rajagopalan, Chem. Phys. Lett. 211 (1993) 559 (https://doi.org/10.1016/0009-2614(93)80143-D)

L. Coppola, R. Gianferri, I. Nicotera, C. Oliviero, G.A. Ranieri, Phys. Chem. Chem. Phys. 6 (2004) 2364 (https://doi.org/10.1039/b316621j)

V. Patel, N. Dharaiya, D. Ray, V. K. Aswal, P. Bahadur, Colloids Surfaces, A: Physicochem. Eng. Aspects 455 (2014) 67 (https://doi.org/10.1016/j.colsurfa.2014.04.025)

A. G. Perez, J.L. Castillo, J. Czapkiewicz, J.R. Rodrıguez, Colloid Polym. Sci. 280 (2002) 503 (https://doi.org/10.1007/s00396-001-0635-2)

A. Kalogirou, L. N. Gergidis, O. Moultos, C. Vlahos, Phys. Rev., E 92 (2015) 052601 (https://doi.org/10.1103/PhysRevE.92.052601)

P. S. Goyal, S. V. G. Menon, B. A. Dasannacharya, V. Rajagopalan, Chem. Phys. Lett. 211 (1993) 559 (https://doi.org/10.1016/0009-2614(93)80143-D)

D. Myers, Surface, interfaces, and colloids, Wiley, New York, 1999

M. Fujii, B. Y. Li, K. Fukada, T. Kato, T. Seimiya, Langmuir 17 (2001) 1138 (https://doi.org/10.1021/la001007x)

S. Perkin, N. Kampf, J. Klein, J. Phys. Chem., B 109 (2005) 3832 (https://doi.org/10.1021/jp047746u)

L. Cantu, M. Corti, E. Favero, E. Digirolamo, A. Raudino, J. Phys. II 6 (1996) 1067 (https://doi.org/10.1051/jp2:1996116)

L. Nianbing, L. Shaopu, L. Hongqun, Anal. Lett. 35 (2002) 1229 (https://doi.org/10.1081/AL-120005975)

B. L. Bales, M. Benrraou, R. Zana, J. Phys. Chem., B 106 (2002) 9033 (https://doi.org/10.1021/jp021297l)

H. Hirata, A. Ohira, N. Iimura, Langmuir 12 (1996) 6044 (https://doi.org/10.1021/la9603535)

J. Manojlovic, Thermal Sci. 6 (2012) S633 (https://doi.org/10.2298/TSCI120427197M)

M. Jalali-Heravi, E. Konouz, Internet Electron. J. Mol. Des. 1 (2002) 410 (https://pdfs.semanticscholar.org/dc54/70ab20db771b7aa6e8bf1cb6898b87132968.pdf)

E. Cappelaere, R. Cressely, J. P. Decruppe, Colloids Surfaces, A: Physicochem. Eng. Aspects 104 (1995) 353 (https://doi.org/10.1016/0927-7757(95)03332-2)

C. Vautier-Giongo, B.L. Bales, J. Phys. Chem., B 107 (2003) 5398 (https://doi.org/10.1021/jp0270957)

B. L. Bales, M. Benrraou, R. Zana, J. Phys. Chem., B 106 (2002) 9033 (https://doi.org/10.1021/jp021297l)

Y. Moroi, Micelles: theoretical and applied aspects, Springer US, New York, 1992, ISBN 978-1-4899-0700-4

R. Ball, A. D. J. Haymet, Phys. Chem. Chem. Phys. 3 (2001) 4753 (https://doi.org/10.1039/B104483B).