Thermodynamics of adsorption of malachite green hydrochloride on treated and untreated corncob charcoal
Main Article Content
Abstract
The need to explore an environmentally friendly and cheaper adsorbent for removal of dye from polluted water has imposed a requirement for thorough thermodynamic studies of dye removal from synthetically polluted water. The sorption capacities of untreated corncob charcoal (UCC), treated corncob charcoal (TCC) and commercially available activated carbon (ACC) for malachite green (MG) were determined at pH 3.10 and 5.10, in the temperature range 5–30 °C using the batch adsorption method. The adsorption capacity of each adsorbent for MG decreased with the increasing temperature in a manner suggestive of exothermic process. The equilibrium adsorption data were well fitted with Freundlich isotherm. The enthalpy of adsorption is higher at pH 5.10 for any particular adsorbent type compared to data collected at pH 3.10. The adsorption of MG is greatest in activated charcoal at pH 5.10. At pH 3.10 the adsorption process results in reduction in entropy changes in each adsorbent such that ∆SoTCC > ∆SoUCC > ∆SoACC following the same trend as the change in enthalpy. At pH 5.10, however, ∆SoTCC > ∆SoACC > ∆SoUCC and the change of enthalpy of adsorption of MG to the adsorbent follows the same order, ∆HoTCC > ∆HoACC > ∆HoUCC. The values of the enthalpy changes suggest essentially physisorption in all cases.
Downloads
Metrics
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
M. A. Hassan and A. E. Nemr, American J. Environ. Sc. Eng. 1(3) (2017) 64 (https://doi.org/10.11648/j.ajese.20170103.11)
O. Ayten I. Abdullah, Sci. Total Environ. 358 (2006) 137 (https://doi.10.1016/j.scitotenv.2005.08.004)
K. R. Mahbub, A. Mohammad, M. M. Ahmed, S. Begum, Asian J. Biotech. 4 (2012) 129 (https://doi:10.3923/ajbkr.2012.129.136)
C. Zaharia, D. Suteu, A. Muresan Bioresour. Technol. 96 (2005) 1285 (https://doi:10.1016/j.biortech.2004.10.021)
Y-S. Ho, W-T. Chiu and C-C. Wang J. Sc and Ind. Res. 61 (2002) 971
M. Ozacar, I. A Sengil, Bioresour. Technol 96 (2005) 791 – 795 (https://doi:10.1016/j.biortech.2004.07.011)
G. Annadurai, R. S. Juang, D. L Lee, Water Sci. Technol. 47 (2003) 185 (https://doi:10.1016/S0304-3894(02)00017-1)
R. Malik, D. S. Ramteke, S. R. Wate, Waste Manage. 27 (2007) 1129 (https://doi:org/10.1016/j.wasman.2006.06.009)
G. Mckay, H. S. Blair, J. R. Gardner, J. Appl. Polym Sci. 27 (1982) 3043 (https://doi:org/10.1002/app.1982.070270827)
E. C. Lima, M. A. Adebayo, F. M. Machado, Carbon Nanomaterials as Adsorbents for Environmental and Biological Applications, Spriger Cham, Switzerland AG, 2015, 33 – 69 (https://doi.org/10.1007/978-3-319-18875-1_3)
K. Y. Foo and B. H. Hameed, Chem. Eng. J. 156 (2010) 2 (https://doi:org/10.1016/j.cej.2009.09.013)
M. Wawrzkiewicz and Z. Hubicki, J. Hazard. Mater, 172 (2009) 868 (http://doi:10.1016/j.jhazmat.2009.07.069)
X Chen, Information 6 (2015) 14 (https://doi:10.3390/info6010014)
P. K. Malik, J. Hazard. Mater. 113 (2004).81 (http://doi:10.1016/j.jhazmat.2004.05)
M. J. Iqbal, M. N. Ashiq, J. Hazard. Mater. B139 (2007) 57 (https://doi:10.1016/j.jhazmat.2006.06.007)
M. Jaroniec, Surface Science, 50(2) (1975) 553–564. (https://doi:10.1016/0039-6028(75)90044-8)
Y. Yu, Y-Y, Zhuang, Z-H Wan, J. Colloid Interface Sci. 242 (2001) 288 (https://doi:org.1006/jcis.2001.7780)
G. Annadurai, R. S. Juang, D. J. Lee, J. Hazard. Mater. 92 (2002) 263 (https://doi:org/10:1016/S0304-3894(02)00017-1)
M. Z. Momcilovic A. E. Onjia, M. M. Purenovic, A. R. Zarubica, M. S Randelovic, J. Serb. Chem. Soc. 77 (6) (2012) 761 (https://doi:10.2298/JSC110517162M)
M. Smelcerovic, D Dordevic, M. Novakovic, M. Mizdrakovic, J. Serb. Chem. Soc. 75 (6) (2010) 855 (https://doi:10.2298/JSC090717051K)