Hydrogen conversion using gasification of tea factory wastes

Ali Akyüz, Zuhal Akyurek, Muhammad Yasin Naz, Shaharin Anwar Sulaiman, Afsin Gungor


In this study, gasification performance and importance of hydrogen production using waste of tea factory were evaluated. A mathematical model was developed for a gasification system, which includes a water gas shift reactor used for hydrogen purification. The gasifier temperature is 877 °C for developed model. The model has been validated against an 80 kW t h cylindrical downdraft gasifier's experimental data given in the literature for syngas composition for three different air-to-fuel ratios. With the developed model, hydrogen production from tea wastes was achieved to yield a higher level by additionally using water gas shift reactor. 1000 kg of tea waste was gasified and after the hydrogen purification process, a total of 4.1 kmol hydrogen was achieved. Whereas the result would be 2.8 kmol gas hydrogen if a normal gasification method was used. The validity of the developed model was verified by comparing the experimental results obtained from the literature with the model results under the same conditions. After verification of the developed model, the effect of biomass moisture content and Air / Fuel ratio on the product gas composition were investigated. These investigations were also confirmed by experimental data. The results show that it is important to convert biomass waste into a clean energy source of hydrogen to minimize its environmental impact.



biomass, environment, conversion, syngas, thermodynamic, equilibrium

Full Text:

PDF (1,188 kB)


N. L. Panwar, R. Kothari , V. V. Tyagi, Renew. Sust. Energ. Rev. 16 (2012) 1801 (https://doi.org/10.1016/j.rser.2012.01.024)

E. Shayan, V. Zare, I. Mirzaee, Energy. Convers. Manag. 159 (2018) 30 (https://doi.org/10.1016/j.enconman.2017.12.096)

S. Sharma, N. P. Sheth, Energy Convers. Manag. 110 (2016) 307 (https://doi.org/10.1016/j.enconman.2015.12.030)

P. Parthasarathy, K. S. Narayanan, Renew. Energ. 66 (2014) 570 (https://doi.org/10.1016/j.renene.2013.12.025)

D. B. Levin, R. Chahine, Int. J. Hydrog. Energy 35 (2010) 4962 (https://doi.org/10.1016/j.ijhydene.2009.08.067)

P. N. Sheth, B. B. Babu, Bioresour. Technol. 100 (2009) 3127 (https://doi.org/10.1016/j.biortech.2009.01.024)

N. Rakesh,S. Dasappa, Energy. Convers. Manag. 167 (2018) 134 (https://doi.org/10.1016/j.enconman.2018.04.092)

A. Kocer, I. F. Yaka, A. Gungor, Int. J. Hydrog. Energy 42 (2017) 23244 (https://doi.org/10.1016/j.ijhydene.2017.05.110)

A. Gungor, U. Yildirim, Comput. Chem. Eng. 48 (2013) 234 (https://doi.org/10.1016/j.compchemeng.2012.09.012)

A. Gungor, Int. J. Hydrog. Energy. 36 (2011) 6592 (https://doi.org/10.1016/j.ijhydene.2011.02.096)

T. M. Ismail, M. A. El-Salam, Appl. Therm. Eng.112 (2017) 1460 (https://doi.org/10.1016/j.applthermaleng.2016.10.026)

A. Gomez-Barea, B. Leckner, Prog. Energy Combust. Sci. 36 (2010) 444 (https://doi.org/10.1016/j.pecs.2009.12.002)

P. Kaushal, J. Abedi, N. A. Mahinpey, Fuel 89 (2010) 3650 (https://doi.org/10.1016/j.fuel.2010.07.036)

A. Gambarotta, M. Morini, A. Zubani, Appl. Energ. 227 (2018) 119 (https://doi.org/10.1016/j.apenergy.2017.07.135)

H. Liu, R. J. Cattolica, R. Seiser, Int. J. Hydrog. Energy 41 (2016) 11974 (https://doi.org/10.1016/j.ijhydene.2016.04.205)

M. M. Farid, H. J. Jeong, J. Hwang, Fuel, 181 (2016) 1066 (https://doi.org/10.1016/j.fuel.2016.04.130)

X. T. Li, J. R. Grace, C. J. Lim, A. P. Watkinson, H. P. Chen, J. R. Kim, Biomass. Bioenerg. 26 (2004) 171 (https://doi.org/10.1016/S0961-9534(03)00084-9)

W. George, S. I. Huber, C. Avelino, Chem. Rev. 106 (2006) 4044 (https://doi.org/10.1021/cr068360d)

A. Amit, J. A. D. Gokhale, M. Manos, J. Am. Chem. Soc. 130 (2008) 1402 (https://doi.org/10.1021/ja0768237)

M. A. Salam, K. Ahmed, N. Akter, T. Hossain, B. Abdullah, Int. J. Hydrog. Energy 43 (2018) 14944 (https://doi.org/10.1016/j.ijhydene.2018.06.043)

B. B. Uzun, E. Apaydin-Varol, F. Ates, N. Özbay N, A. E. Pütün, Fuel 89 (2010) 176 (https://doi.org/10.1016/j.fuel.2009.08.040)

E. Malkoc, Y. Nuhoglu, Chem. Eng. Sci. 61 (2006) 4363 (https://doi.org/10.1016/j.ces.2006.02.005)

G. Xu, T. Murakami, T. Suda, Y. Matsuzawa, H. Tania, Fuel. Process. Technol. 90 (2009) 137 (https://doi.org/10.1016/j.fuproc.2008.08.007)

T. Mahmood, T. S. Hussain, Afr. J. Biotechnol. 9 (2010) 858 (https://10.5897/AJB09.1555)

D. Gullu, Energ. Source. 25 (2010) 753 (https://doi.org/10.1080/00908310390207783)

G. Pu, H. Zhou, G. Hao, Int. J. Hydrog. Energy 38 (2013) 15757 (https://doi.org/10.1016/j.ijhydene.2013.04.117)

J. George, P. Arun, C. Muraleedharan, Proc. Technol. 25 (2016) 982 (https://doi.org/10.1016/j.protcy.2016.08.194)

P. Basu, Combustion and Gasification in Fluidized Beds, CRC Press, NW, USA, 2006

A. Gungor, M. Ozbayoglu, C. Kasnakoglu, A. Biyikoglu, B. Z. Uysal, Chem. Pap. 66 (2012) 677 (https://doi.org/10.2478/s11696-012-0164-0)

S. Kaewluan, S. Pipatmanomai, Energy. Convers. Manag. 52 (2011) 75 (https://doi.org/10.1016/j.enconman.2010.06.044)

T. Utaka, K. Sekizawa, K. Eguchi. Appl. Catal. A: Gen. 194 (2000) 21-26 (https://doi.org/10.1016/S0926-860X(99)00349-X)

M. J. L. Gines, N. Amadeo, M. Laborde, C. R. Apesteguia Appl. Catal. A: Gen. 131 (1995) 283 (https://doi.org/10.1016/0926-860X(95)00146-8)

E. Xue, M. O’Keeffe, J. R. H. Ross. Catal. Today 30 (1996) 107 (https://doi.org/10.1016/0920-5861(95)00323-1)

S. Battersby, M. C.Duke, S. Liu, V.R., João, C. D. da Costa., J. Membr. Sci 316 (2008) 46-52. (https://doi.org/10.1016/j.memsci.2007.11.021)

S.Chianese, J. Loipersböck, M. Malits, R. Rauch, H. Hofbauer, A. Molino, D. Musmarra. Fuel Processing Tech 132 (2015) 39-48 (https://doi.org/10.1016/j.fuproc.2014.12.034)

T. H. Jayah, L. Aye, R. J. Fuller, D. F. Stewart, Biomass. Bioenerg. 25 (2003) 459 (https://doi.org/10.1016/S0961-9534(03)00037-0)

N. Ayas, T. Esen, Int. J. Hydrog. Energy 41 (2016) 8067 (https://doi.org/10.1016/j.ijhydene.2015.09.156)

S. Ergun, J. Phys. Chem. 60 (1956) 480 (https://doi.org/10.1021/j150538a022)

DOI: https://doi.org/10.2298/JSC190215013A

Copyright (c) 2020 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

5 Year Impact Factor 1.023
138 of 177 journals)