Hydrogen conversion using gasification of tea factory wastes

Main Article Content

Ali Akyüz
Zuhal Akyurek
Muhammad Yasin Naz
Shaharin Anwar Sulaiman
Afsin Gungor

Abstract

In this study, gasification performance and importance of hydrogen production using waste of a tea factory were evaluated. A mathematical model was developed for the gasification system, which includes a water gas shift reactor used for hydrogen purification. The gasifier temperature was 877 °C for the developed model. The model has been validated against experimental data from an 80 kW t h cylindrical downdraft gasifier, given in the literature for syngas composition for three different air-to-fuel ratios. With the developed model, hydrogen production from tea wastes was achieved to yield a higher level by additionally using a water gas shift reactor. Tea waste (1000 kg) was gasified and after the hydrogen purification process, a total of 4.1 kmol hydro­gen was achieved, whereas the amount would be 2.8 kmol gas hydrogen if a normal gasification method were used. The validity of the developed model was verified by comparing the experimental results obtained from the literature with the results of the model under the same conditions. After verification of the developed model, the effect of the moisture content of the biomass and the air/fuel ratio on the composition of the product gas were investigated. These investigations were also confirmed by experimental data. The results show that it is important to convert biomass waste into a clean energy source of hydrogen to minimize its environmental impact.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
A. Akyüz, Z. Akyurek, M. Y. Naz, S. A. Sulaiman, and A. Gungor, “Hydrogen conversion using gasification of tea factory wastes”, J. Serb. Chem. Soc., vol. 85, no. 7, pp. 967–977, Jul. 2020.
Section
Environmental Chemistry
Author Biographies

Ali Akyüz, Bucak Emin Gulmez V. S., Burdur Mehmet Akif Ersoy University

Bucak Emin Gulmez Technical Sciences VHS

Zuhal Akyurek, Department of Polymer Engineering, Faculty of Engineering and Architecture, Burdur Mehmet Akif Ersoy University

Department of Polymer Engineering, Faculty of Engineering and Architecture

Muhammad Yasin Naz, Department of Physics, University of Agriculture, Faisalabad

Department of Physics

Shaharin Anwar Sulaiman, Department of Mechanical Engineering, Universiti Teknologi Petronas, Perak

6Department of Mechanical Engineering

Afsin Gungor, Department of Mechanical Engineering, Akdeniz Universityand Bucak Technology Faculty, Burdur Mehmet Akif Ersoy University

Department of Mechanical Engineering

References

N. L. Panwar, R. Kothari, V. V. Tyagi, Renew. Sust. Energy Rev. 16 (2012) 1801 (https://doi.org/10.1016/j.rser.2012.01.024)

E. Shayan, V. Zare, I. Mirzaee, Energy Conv. Manage. 159 (2018) 30 (https://doi.org/10.1016/j.enconman.2017.12.096)

S. Sharma, N. P. Sheth, Energy Conv. Manage. 110 (2016) 307 (https://doi.org/10.1016/j.enconman.2015.12.030)

P. Parthasarathy, K. S. Narayanan, Renew. Energy 66 (2014) 570 (https://doi.org/10.1016/j.renene.2013.12.025)

D. B. Levin, R. Chahine, Int. J. Hydrogen Energy 35 (2010) 4962 (https://doi.org/10.1016/j.ijhydene.2009.08.067)

P. N. Sheth, B. B. Babu, Bioresour. Technol. 100 (2009) 3127 (https://doi.org/10.1016/j.biortech.2009.01.024)

N. Rakesh,S. Dasappa, Energy Conv. Manage. 167 (2018) 134 (https://doi.org/10.1016/j.enconman.2018.04.092)

A. Kocer, I. F. Yaka, A. Gungor, Int. J. Hydrogen Energy 42 (2017) 23244 (https://doi.org/10.1016/j.ijhydene.2017.05.110)

A. Gungor, U. Yildirim, Comput. Chem. Eng. 48 (2013) 234 (https://doi.org/10.1016/j.compchemeng.2012.09.012)

A. Gungor, Int. J. Hydrogen Energy 36 (2011) 6592 (https://doi.org/10.1016/j.ijhydene.2011.02.096)

T. M. Ismail, M. A. El-Salam, Appl. Therm. Eng. 112 (2017) 1460 (https://doi.org/10.1016/j.applthermaleng.2016.10.026)

A. Gomez-Barea, B. Leckner, Prog. Energy Combust. Sci. 36 (2010) 444 (https://doi.org/10.1016/j.pecs.2009.12.002)

P. Kaushal, J. Abedi, N. A. Mahinpey, Fuel 89 (2010) 3650 (https://doi.org/10.1016/j.fuel.2010.07.036)

A. Gambarotta, M. Morini, A. Zubani, Appl. Energy 227 (2018) 119 (https://doi.org/10.1016/j.apenergy.2017.07.135)

H. Liu, R. J. Cattolica, R. Seiser, Int. J. Hydrogen Energy 41 (2016) 11974 (https://doi.org/10.1016/j.ijhydene.2016.04.205)

M. M. Farid, H. J. Jeong, J. Hwang, Fuel 181 (2016) 1066 (https://doi.org/10.1016/j.fuel.2016.04.130)

X. T. Li, J. R. Grace, C. J. Lim, A. P. Watkinson, H. P. Chen, J. R. Kim, Biomass. Bioenergy 26 (2004) 171 (https://doi.org/10.1016/S0961-9534(03)00084-9)

W. George, S. I. Huber, C. Avelino, Chem. Rev. 106 (2006) 4044 (https://doi.org/10.1021/cr068360d)

A. Amit, J. A. D. Gokhale, M. Manos, J. Am. Chem. Soc. 130 (2008) 1402 (https://doi.org/10.1021/ja0768237)

M. A. Salam, K. Ahmed, N. Akter, T. Hossain, B. Abdullah, Int. J. Hydrogen Energy 43 (2018) 14944 (https://doi.org/10.1016/j.ijhydene.2018.06.043)

B. B. Uzun, E. Apaydin-Varol, F. Ates, N. Özbay N, A. E. Pütün, Fuel 89 (2010) 176 (https://doi.org/10.1016/j.fuel.2009.08.040)

E. Malkoc, Y. Nuhoglu, Chem. Eng. Sci. 61 (2006) 4363 (https://doi.org/10.1016/j.ces.2006.02.005)

G. Xu, T. Murakami, T. Suda, Y. Matsuzawa, H. Tania, Fuel. Process. Technol. 90 (2009) 137 (https://doi.org/10.1016/j.fuproc.2008.08.007)

T. Mahmood, T. S. Hussain, Afr. J. Biotechnol. 9 (2010) 858 (https://10.5897/AJB09.1555)

D. Gullu, Energy Sources 25 (2010) 753 (https://doi.org/10.1080/00908310390207783)

G. Pu, H. Zhou, G. Hao, Int. J. Hydrogen Energy 38 (2013) 15757 (https://doi.org/10.1016/j.ijhydene.2013.04.117)

J. George, P. Arun, C. Muraleedharan, Proc. Technol. 25 (2016) 982 (https://doi.org/10.1016/j.protcy.2016.08.194)

P. Basu, Combustion and Gasification in Fluidized Beds, CRC Press, Boca Raton, FL, 2006

A. Gungor, M. Ozbayoglu, C. Kasnakoglu, A. Biyikoglu, B. Z. Uysal, Chem. Pap. 66 (2012) 677 (https://doi.org/10.2478/s11696-012-0164-0)

S. Kaewluan, S. Pipatmanomai, Energy Conv. Manage. 52 (2011) 75 (https://doi.org/10.1016/j.enconman.2010.06.044)

T. Utaka, K. Sekizawa, K. Eguchi. Appl. Catal., A 194 (2000) 21 (https://doi.org/10.1016/S0926-860X(99)00349-X)

M. J. L. Gines, N. Amadeo, M. Laborde, C. R. Apesteguia, Appl. Catal., A 131 (1995) 283 (https://doi.org/10.1016/0926-860X(95)00146-8)

E. Xue, M. OKeeffe, J. R. H. Ross. Catal. Today 30 (1996) 107 (https://doi.org/10.1016/0920-5861(95)00323-1)

S. Battersby, M. C.Duke, S. Liu, V.R., João, C. D. da Costa., J. Membr. Sci. 316 (2008) 46 (https://doi.org/10.1016/j.memsci.2007.11.021)

S. Chianese, J. Loipersböck, M. Malits, R. Rauch, H. Hofbauer, A. Molino, D. Musmarra. Fuel Proc. Tech. 132 (2015) 39 (https://doi.org/10.1016/j.fuproc.2014.12.034)

T. H. Jayah, L. Aye, R. J. Fuller, D. F. Stewart, Biomass. Bioenergy 25 (2003) 459 (https://doi.org/10.1016/S0961-9534(03)00037-0)

N. Ayas, T. Esen, Int. J. Hydrogen Energy 41 (2016) 8067 (https://doi.org/10.1016/j.ijhydene.2015.09.156)

S. Ergun, J. Phys. Chem. 60 (1956) 480 (https://doi.org/10.1021/j150538a022).