Hydrogen conversion using gasification of tea factory wastes
Main Article Content
Abstract
In this study, gasification performance and importance of hydrogen production using waste of a tea factory were evaluated. A mathematical model was developed for the gasification system, which includes a water gas shift reactor used for hydrogen purification. The gasifier temperature was 877 °C for the developed model. The model has been validated against experimental data from an 80 kW t h cylindrical downdraft gasifier, given in the literature for syngas composition for three different air-to-fuel ratios. With the developed model, hydrogen production from tea wastes was achieved to yield a higher level by additionally using a water gas shift reactor. Tea waste (1000 kg) was gasified and after the hydrogen purification process, a total of 4.1 kmol hydrogen was achieved, whereas the amount would be 2.8 kmol gas hydrogen if a normal gasification method were used. The validity of the developed model was verified by comparing the experimental results obtained from the literature with the results of the model under the same conditions. After verification of the developed model, the effect of the moisture content of the biomass and the air/fuel ratio on the composition of the product gas were investigated. These investigations were also confirmed by experimental data. The results show that it is important to convert biomass waste into a clean energy source of hydrogen to minimize its environmental impact.
Downloads
Metrics
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
N. L. Panwar, R. Kothari, V. V. Tyagi, Renew. Sust. Energy Rev. 16 (2012) 1801 (https://doi.org/10.1016/j.rser.2012.01.024)
E. Shayan, V. Zare, I. Mirzaee, Energy Conv. Manage. 159 (2018) 30 (https://doi.org/10.1016/j.enconman.2017.12.096)
S. Sharma, N. P. Sheth, Energy Conv. Manage. 110 (2016) 307 (https://doi.org/10.1016/j.enconman.2015.12.030)
P. Parthasarathy, K. S. Narayanan, Renew. Energy 66 (2014) 570 (https://doi.org/10.1016/j.renene.2013.12.025)
D. B. Levin, R. Chahine, Int. J. Hydrogen Energy 35 (2010) 4962 (https://doi.org/10.1016/j.ijhydene.2009.08.067)
P. N. Sheth, B. B. Babu, Bioresour. Technol. 100 (2009) 3127 (https://doi.org/10.1016/j.biortech.2009.01.024)
N. Rakesh,S. Dasappa, Energy Conv. Manage. 167 (2018) 134 (https://doi.org/10.1016/j.enconman.2018.04.092)
A. Kocer, I. F. Yaka, A. Gungor, Int. J. Hydrogen Energy 42 (2017) 23244 (https://doi.org/10.1016/j.ijhydene.2017.05.110)
A. Gungor, U. Yildirim, Comput. Chem. Eng. 48 (2013) 234 (https://doi.org/10.1016/j.compchemeng.2012.09.012)
A. Gungor, Int. J. Hydrogen Energy 36 (2011) 6592 (https://doi.org/10.1016/j.ijhydene.2011.02.096)
T. M. Ismail, M. A. El-Salam, Appl. Therm. Eng. 112 (2017) 1460 (https://doi.org/10.1016/j.applthermaleng.2016.10.026)
A. Gomez-Barea, B. Leckner, Prog. Energy Combust. Sci. 36 (2010) 444 (https://doi.org/10.1016/j.pecs.2009.12.002)
P. Kaushal, J. Abedi, N. A. Mahinpey, Fuel 89 (2010) 3650 (https://doi.org/10.1016/j.fuel.2010.07.036)
A. Gambarotta, M. Morini, A. Zubani, Appl. Energy 227 (2018) 119 (https://doi.org/10.1016/j.apenergy.2017.07.135)
H. Liu, R. J. Cattolica, R. Seiser, Int. J. Hydrogen Energy 41 (2016) 11974 (https://doi.org/10.1016/j.ijhydene.2016.04.205)
M. M. Farid, H. J. Jeong, J. Hwang, Fuel 181 (2016) 1066 (https://doi.org/10.1016/j.fuel.2016.04.130)
X. T. Li, J. R. Grace, C. J. Lim, A. P. Watkinson, H. P. Chen, J. R. Kim, Biomass. Bioenergy 26 (2004) 171 (https://doi.org/10.1016/S0961-9534(03)00084-9)
W. George, S. I. Huber, C. Avelino, Chem. Rev. 106 (2006) 4044 (https://doi.org/10.1021/cr068360d)
A. Amit, J. A. D. Gokhale, M. Manos, J. Am. Chem. Soc. 130 (2008) 1402 (https://doi.org/10.1021/ja0768237)
M. A. Salam, K. Ahmed, N. Akter, T. Hossain, B. Abdullah, Int. J. Hydrogen Energy 43 (2018) 14944 (https://doi.org/10.1016/j.ijhydene.2018.06.043)
B. B. Uzun, E. Apaydin-Varol, F. Ates, N. Özbay N, A. E. Pütün, Fuel 89 (2010) 176 (https://doi.org/10.1016/j.fuel.2009.08.040)
E. Malkoc, Y. Nuhoglu, Chem. Eng. Sci. 61 (2006) 4363 (https://doi.org/10.1016/j.ces.2006.02.005)
G. Xu, T. Murakami, T. Suda, Y. Matsuzawa, H. Tania, Fuel. Process. Technol. 90 (2009) 137 (https://doi.org/10.1016/j.fuproc.2008.08.007)
T. Mahmood, T. S. Hussain, Afr. J. Biotechnol. 9 (2010) 858 (https://10.5897/AJB09.1555)
D. Gullu, Energy Sources 25 (2010) 753 (https://doi.org/10.1080/00908310390207783)
G. Pu, H. Zhou, G. Hao, Int. J. Hydrogen Energy 38 (2013) 15757 (https://doi.org/10.1016/j.ijhydene.2013.04.117)
J. George, P. Arun, C. Muraleedharan, Proc. Technol. 25 (2016) 982 (https://doi.org/10.1016/j.protcy.2016.08.194)
P. Basu, Combustion and Gasification in Fluidized Beds, CRC Press, Boca Raton, FL, 2006
A. Gungor, M. Ozbayoglu, C. Kasnakoglu, A. Biyikoglu, B. Z. Uysal, Chem. Pap. 66 (2012) 677 (https://doi.org/10.2478/s11696-012-0164-0)
S. Kaewluan, S. Pipatmanomai, Energy Conv. Manage. 52 (2011) 75 (https://doi.org/10.1016/j.enconman.2010.06.044)
T. Utaka, K. Sekizawa, K. Eguchi. Appl. Catal., A 194 (2000) 21 (https://doi.org/10.1016/S0926-860X(99)00349-X)
M. J. L. Gines, N. Amadeo, M. Laborde, C. R. Apesteguia, Appl. Catal., A 131 (1995) 283 (https://doi.org/10.1016/0926-860X(95)00146-8)
E. Xue, M. OKeeffe, J. R. H. Ross. Catal. Today 30 (1996) 107 (https://doi.org/10.1016/0920-5861(95)00323-1)
S. Battersby, M. C.Duke, S. Liu, V.R., João, C. D. da Costa., J. Membr. Sci. 316 (2008) 46 (https://doi.org/10.1016/j.memsci.2007.11.021)
S. Chianese, J. Loipersböck, M. Malits, R. Rauch, H. Hofbauer, A. Molino, D. Musmarra. Fuel Proc. Tech. 132 (2015) 39 (https://doi.org/10.1016/j.fuproc.2014.12.034)
T. H. Jayah, L. Aye, R. J. Fuller, D. F. Stewart, Biomass. Bioenergy 25 (2003) 459 (https://doi.org/10.1016/S0961-9534(03)00037-0)
N. Ayas, T. Esen, Int. J. Hydrogen Energy 41 (2016) 8067 (https://doi.org/10.1016/j.ijhydene.2015.09.156)
S. Ergun, J. Phys. Chem. 60 (1956) 480 (https://doi.org/10.1021/j150538a022).