Hydrogen transfer reaction: Bond formation and bond cleavage through the eyes of interacting quantum atoms

Branislav Milovanović, Mihajlo Etinski, Milena Petković

Abstract


Hydrogen transfer from hydroquinone to the methoxy radical was studied using the density functional theory. The energy decomposition tech­nique, interacting quantum atoms, was employed for a detailed investigation of the changes that the bonds of interest go through along the minimum energy path in the vicinity of the transition state. The whole system was divided either into two or three fragments. The two-fragment analysis enabled investigation of the bond that is formed or the one that is cleaved by defining the fragments as reactants and as products, respectively. The three-fragment analysis (the fragments being semiquinone, hydrogen atom and methoxy radical) was used for the simultaneous analysis of the two phenomena, bond cleavage and bond formation. Additionally, it enabled the interaction between the particle that donates the hydrogen atom and the one that accepts it to be investigated. This interaction is characterized by attractive non-classical and repulsive classical interactions. It was demonstrated that the transferring hydrogen atom under­goes the most pronounced energy changes and gives the largest contribution to the deformation energy.


Keywords


interacting quantum atoms; density functional theory; antioxidants; polyphenols; radicals

Full Text:

PDF (2,307 kB)

References


M. Polovka, C. Brezová, A. Staško, Biophys. Chem. 106 (2003) 39 (https://doi.org/10.1016/S0301-4622(03)00159-5)

V. B. Luzhkov, Chem. Phys. 314 (2005) 211 (https://doi.org/10.1016/j.chemphys.2005.03.001)

T. L. Duarte, J. Lunec, Free Radic. Res. 39 (2005) 671 (https://doi.org/10.1080/10715760500104025)

S. Fiorucci, J. Golebiowski, D. Cabrol-Bass, S. Antonczak, J. Agric. Food Chem. 55 (2007) 903 (https://doi.org/10.1021/jf061864s)

A. Karadag, B. Ozcelik, S. Saner, Food Anal. Method. 2 (2009) 41 (https://doi.org/10.1007/s12161-008-9067-7)

K. Sadasivam, R. Kumaresan, Mol. Phys. 109 (2011) 839 (https://doi.org/10.1080/00268976.2011.556576)

M. Carocho, I. C. F. R. Ferreira, Food Chem. Toxicol. 51 (2013) 15 (https://doi.org/10.1016/j.fct.2012.09.021)

Y. Kono, K. Kobayashi, S. Tagawa, K. Adachi, A. Ueda, Y. Sawa, H. Shibata, Biochim. Biophys. Acta 1335 (1997) 335 (https://doi.org/10.1016/S0304-4165(96)00151-1)

Y. Sueishi, M. Hori, M. Ishikawa, K. Matsuura, E. Kamogawa, Y. Honda, M. Kita, K. Ohara, J. Clin. Biochem. Nutr. 54 (2014) 67 (https://doi.org/10.3164/jcbn.13-53)

F. di Meo, V. Lemaur, J. Cornil, R. Lazzaroni, J.-L. Duroux, Y. Olivier, P. Trouillas, J. Phys. Chem., A 117 (2013) 2082 (https://doi.org/10.1021/jp3116319)

L. Muños-Rugeles, J. R. Alvarez-Idaboy, Phys. Chem. Chem. Phys. 17 (2015) 28525 (https://doi.org/10.1039/C5CP05090A)

L. Muñoz-Rugeles, A. Galano, J. R. Alvarez-Idaboy, Phys. Chem. Chem. Phys. 19 (2017) 15296 (https://doi.org/10.1039/C7CP01557G)

W. Bors, C. Michel, Ann. N. Y. Acad. Sci. 957 (2002) 57 (https://doi.org/10.1111/j.1749-6632.2002.tb02905.x)

Đ. Nakarada, M. Petković, Int. J. Quant. Chem. 118 (2018) e25496 (https://doi.org/10.1002/qua.25496)

M. Petković, Đ. Nakarada, M. Etinski, J. Comp. Chem. 39 (2018) 1868 (https://doi.org/10.1002/jcc.25359)

O. A. Syzgantseva, V. Tognetti, L. Houbert, J. Phys. Chem., A 117 (2013) 8969 (https://doi.org/10.1021/jp4059774)

Z. Badri, C. Foroutan-Nejad, J. Kozelka, R. Marek, Phys. Chem. Chem. Phys. 17 (2015) 26183 (https://doi.org/ 10.1039/C5CP04489H)

I. Cukrowski, P. Mangondo, J. Comput. Chem. 37 (2016) 1373 (https://doi.org/10.1002/jcc.24346)

J. Jara-Cortés, B. Landeros-Rivera, J. Hernándes-Trujillo, Phys. Chem. Chem. Phys. 20 (2018) 27558 (https://doi.org/10.1039/C8CP03775B)

T. A. N. Nguyen, G. Frenking, Chem. Eur. J. 18 (2012) 12733 (https://doi.org/10.1002/chem.201200741)

F. Zaccaria, G. Paragi, C. F. Guerra, Phys. Chem. Chem. Phys. 18 (2016) 20895 (https://doi.org/10.1039/C6CP01030J)

K. F. Andriani, G. Heinzelmann, G. F. Caramori, J. Phys. Chem., B 123 (2019) 457 (https://doi.org/10.1021/acs.jpcb.8b11287)

P. Jerabek, P. Schwerdtfeger, G. Frenking, J. Comp. Chem. 40 (2019) 247 (https://doi.org/10.1002/jcc.25584)

Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 120 (2008) 215 (https://doi.org/10.1007/s00214-007-0310-x)

A. D. McLean, G. S. Chandler, J. Chem. Phys. 72 (1980) 5639 (https://doi.org/10.1063/1.438980)

R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys. 72 (1980) 650 (https://doi.org/10.1063/1.438955)

T. Clark, J. Chandrasekhar, G. W. Spitznagel, P. v. R. Schleyer, J. Comp. Chem. 4 (1983) 294 (https://doi.org/10.1002/jcc.540040303)

M. J. Frisch, J. A. Pople, J. S. Binkley, J. Chem. Phys. 80 (1984) 3265 (https://doi.org/10.1063/1.447079)

Gaussian 09, Revision D.01, Gaussian Inc., Wallingford CT, 2009 (http://gaussian.com)

Y. Zhao, D. G. Truhlar, Chem. Phys. Lett. 502 (2011) 1 (https://doi.org/10.1016/j.cplett.2010.11.060)

Y. Zhao, D. G. Truhlar, J. Chem. Theory Comput. 7 (2011) 669 (https://doi.org/10.1021/ct1006604)

Y. Zhao, D. G. Truhlar, J. Phys. Chem., A 112 (2008) 1096 (https://doi.org/10.1021/jp7109127)

H. P. Hratchian, H. B. Schlegel, J. Chem. Phys. 120 (2004) 9918 (https://doi.org/10.1063/1.1724823)

H. P. Hratchian, H. B. Schlegel, Theory and Applications of Computational Chemistry: The First 40 Years, C. E. Dykstra, G. Frenking, K. S. Kim, G. Scuseria, Eds., Elsevier, Amsterdam, 2005, p. 195 (ISBN 9780080456249)

H. P. Hratchian, H. B. Schlegel, J. Chem. Theory Comput. 1 (2005) 61 (https://doi.org/10.1021/ct0499783)

R. F. W. Bader, Atoms in Molecules: A Quantum Theory; Oxford University Press, Oxford, 1990

M. A. Blanco, A. M. Pendás, E. Francisco, J. Chem. Theory Comput. 1 (2005) 1096 (https://doi.org/10.1021/ct0501093)

A. M. Pendás, M. A. Blanco, E. Francisco, J. Comp. Chem. 28 (2007) 161 (https://doi.org/10.1002/jcc.20469)

AIMAll (Version 17.11.14), T. A. Keith, T. K. Gristmill Software, Overland Park, KS, 2017 (http://aim.tkgristmill.com)

C. J. van der Westhuizen, Ms. Thesis, University of Pretoria, Pretoria, 2017 (http://hdl.handle.net/2263/63346)

M. Stojanović, M. Baranac-Stojanović, Eur. J. Org. Chem. 2018 (2018) 6230 (https://doi.org/10.1002/ejoc.201801047).




DOI: https://doi.org/10.2298/JSC190226034M

Copyright (c) 2019 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)