Hydrogen transfer reaction: Bond formation and bond cleavage through the eyes of Interacting Quantum Atoms

Branislav Milovanović, Mihajlo Etinski, Milena Petković

Abstract


Hydrogen transfer from hydroquinone to methoxy radical was studied using Density Functional Theory. Energy decomposition technique, Interacting Quantum Atoms, was employed for a detailed investigation of changes that bonds of interest are going through along the minimum energy path in the vicinity of the transition state. We divided the whole system either in two or three fragments. Two-fragment analysis enabled investigation of the bond that gets formed or the one that gets cleaved by defining the fragments as reactants and as products, respectively. Three fragment analysis (the fragments being semiquinone, hydrogen atom and methoxy radical) was used for a simultaneous analysis of both phenomena, bond cleavage and bond formation. Additionally, it enabled to investigate the interaction between the particle that donates the hydrogen atom and the one that accepts it. This interaction is characterized by attractive non-classical and repulsive classical interactions. It was demonstrated that the transferring hydrogen atom undergoes the most pronounced energy changes and gives the largest contribution to the deformation energy.


Keywords


Interacting Quantum Atoms; Density Functional Theory; antioxidants; polyphenols; radicals

Full Text:

PDF (1,228 kB)

References


M. Polovka, C. Brezová, A. Staško, Biophys. Chem. 106 (2003) 39 (https://doi.org/10.1016/S0301-4622(03)00159-5)

V. B. Luzhkov, Chem. Phys. 314 (2005) 211

(https://doi.org/10.1016/j.chemphys.2005.03.001)

T. L. Duarte, J. Lunec, Free Radic. Res. 39 (2005) 671

(https://doi.org/10.1080/10715760500104025)

S. Fiorucci, J. Golebiowski, D. Cabrol-Bass, S. Antonczak, J. Agric. Food Chem. 55 (2007) 903

(https://doi.org/10.1021/jf061864s)

A. Karadag, B. Ozcelik, S. Saner, Food Anal. Methods 2 (2009) 41

(https://doi.org/10.1007/s12161-008-9067-7)

K. Sadasivam, R. Kumaresan, Mol. Phys. 109 (2011) 839

(https://doi.org/10.1080/00268976.2011.556576)

M. Carocho, I. C. F. R. Ferreira, Food Chem. Toxicol. 51 (2013) 15

(https://doi.org/10.1016/j.fct.2012.09.021)

Y. Kono, K. Kobayashi, S. Tagawa, K. Adachi, A. Ueda, Y. Sawa, H. Shibata, Biochim. Biophys. Acta 1335 (1997) 335

(https://doi.org/10.1016/S0304-4165(96)00151-1)

Y. Sueishi, M. Hori, M. Ishikawa, K. Matsuura, E. Kamogawa, Y. Honda, M. Kita, K. Ohara, J. Clin. Biochem. Nutr. 54 (2014) 67

(https://doi.org/10.3164/jcbn.13-53)

F. Di Meo, V. Lemaur, J. Cornil, R. Lazzaroni, J.-L. Duroux, Y. Olivier, P. Trouillas, J. Phys. Chem. A 117 (2013) 2082

(https://doi.org/10.1021/jp3116319)

L. Muños-Rugeles, J. R. Alvarez-Idaboy, Phys. Chem. Chem. Phys. 17 (2015) 28525

(https://doi.org/10.1039/C5CP05090A)

L. Muñoz-Rugeles, A. Galano, J. R. Alvarez-Idaboy, Phys. Chem. Chem. Phys. 19 (2017) 15296 (https://doi.org/10.1039/C7CP01557G)

W. Bors, C. Michel, Ann. N. Y. Acad. Sci. 957 (2002) 57

(https://doi.org/10.1111/j.1749-6632.2002.tb02905.x)

Đ. Nakarada, M. Petković, Int. J. Quant. Chem. 118 (2018) e25496

(https://doi.org/10.1002/qua.25496)

M. Petković, Đ. Nakarada, M. Etinski, J. Comp. Chem. 39 (2018) 1868

(https://doi.org/10.1002/jcc.25359)

O. A. Syzgantseva, V. Tognetti, L. Houbert, J. Phys. Chem. A 117 (2013) 8969 (https://doi.org/10.1021/jp4059774)

Z. Badri, C. Foroutan-Nejad, J. Kozelka, R. Marek, Phys. Chem. Chem. Phys. 17 (2015) 26183 (https://doi.org/ 10.1039/C5CP04489H)

I. Cukrowski, P. Mangondo, J. Comput. Chem. 37 (2016) 1373 (https://doi.org/10.1002/jcc.24346)

J. Jara-Cortés, B. Landeros-Rivera, J. Hernándes-Trujillo, Phys. Chem. Chem. Phys. 20 (2018) 27558 (https://doi.org/10.1039/C8CP03775B)

T. A. N. Nguyen, G. Frenking, Chem. Eur. J. 18 (2012) 12733

(https://doi.org/10.1002/chem.201200741)

F. Zaccaria, G. Paragi, C. F. Guerra, Phys. Chem. Chem. Phys. 18 (2016) 20895

(https://doi.org/10.1039/C6CP01030J)

K. F. Andriani, G. Heinzelmann, G. F. Caramori, J. Phys. Chem. B. 123 (2019) 457 (https://doi.org/10.1021/acs.jpcb.8b11287)

P. Jerabek, P. Schwerdtfeger, G. Frenking, J. Comp. Chem. 40 (2019) 247 (https://doi.org/10.1002/jcc.25584)

Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 120 (2008) 215 (https://doi.org/10.1007/s00214-007-0310-x)

A. D. McLean, G. S. Chandler, J. Chem. Phys. 72 (1980) 5639

(https://doi.org/10.1063/1.438980)

R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys. 72 (1980) 650

(https://doi.org/10.1063/1.438955)

T. Clark, J. Chandrasekhar, G. W. Spitznagel, P. v. R. Schleyer, J. Comp. Chem. 4 (1983) 294 (https://doi.org/10.1002/jcc.540040303)

M. J. Frisch, J. A. Pople, J. S. Binkley, J. Chem. Phys. 80 (1984) 3265

(https://doi.org/10.1063/1.447079)

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision D.01, Gaussian Inc, Wallingford CT, 2009.

(http://gaussian.com)

Y. Zhao, D. G. Truhlar, Chem. Phys. Lett. 502 (2011) 1

(https://doi.org/10.1016/j.cplett.2010.11.060)

Y. Zhao, D. G. Truhlar, J. Chem. Theory Comput. 7 (2011) 669

(https://doi.org/10.1021/ct1006604)

Y. Zhao, D. G. Truhlar, J. Phys. Chem. A 112 (2008) 1096

(https://doi.org/10.1021/jp7109127)

H. P. Hratchian, H. B. Schlegel, J. Chem. Phys. 120 (2004) 9918

(https://doi.org/10.1063/1.1724823)

H. P. Hratchian, H. B. Schlegel, Theory and Applications of Computational Chemistry: The First 40 Years, Ed. C. E. Dykstra, G. Frenking, K. S. Kim, G. Scuseria, Elsevier, Amsterdam, Netherlands, 2005, p. 195 (ISBN: 9780080456249)

H. P. Hratchian, H. B. Schlegel, J. Chem. Theory and Comput. 1 (2005) 61

(https://doi.org/10.1021/ct0499783)

R. F. W. Bader, Atoms in Molecules: A Quantum Theory; Oxford University Press: Oxford, United Kingdom, 1990.

M. A. Blanco, A. M. Pendás, E. Francisco, J. Chem. Theory Comput. 1 (2005) 1096

(https://doi.org/10.1021/ct0501093)

A. M. Pendás, M. A. Blanco, E. Francisco, J. Comp. Chem. 28 (2007) 161

(https://doi.org/10.1002/jcc.20469)

AIMAll (Version 17.11.14), T. A. Keith, TK Gristmill Software, Overland Park KS, USA, 2017 (http://aim.tkgristmill.com)

C. J. van der Westhuizen, Nucleophilic Substitution Reactions of -Haloketones: A Computational Study (Master thesis). University of Pretoria: Pretoria, 2017.

(http://hdl.handle.net/2263/63346)

M. Stojanović, M. Baranac-Stojanović, Eur. J. Org. Chem. 2018 (2018) 6230

(https://doi.org/10.1002/ejoc.201801047)




DOI: https://doi.org/10.2298/JSC190226034M

Copyright (c) 2019 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)