Photodegradation of selected pesticides: Photocatalytic activity of bare and PANI-modified TiO2 under simulated solar irradiation

Main Article Content

Marina J. Lazarević
http://orcid.org/0000-0002-9539-4588
Vesna N. Despotović
Daniela V. Šojić Merkulov
http://orcid.org/0000-0003-4504-291X
Nemanja D. Banić
http://orcid.org/0000-0003-1272-8499
Nina L. Finčur
http://orcid.org/0000-0001-6419-7576
Dragana D. Četojević-Simin
http://orcid.org/0000-0002-0808-9826
Mirjana I. Čomor
http://orcid.org/0000-0002-7222-4500
Biljana F Abramović
http://orcid.org/0000-0001-7009-8523

Abstract

In this paper the efficiency of photocatalytic degradation of different pesticides was investigated using bare TiO2 and TiO2 nanoparticles modified with polyaniline under simulated solar irradiation. Sulcotrione showed the highest percentage degradation and further experiments were related to this herbicide. Mineralization and cytotoxicity of the starting compound and inter­mediate species formed during the decomposition in double distilled water (DDW), as well as the efficiency of removal from various environmental waters were studied. The contents of the most abundant ions present in the River Danube were simulated in DDW and their influence was evaluated. It was found that cytotoxicity was in all cases below 11 % and the efficiency of photocatalytic degradation in environmental waters was decreased compared with DDW. Furthermore, addition of different scavengers revealed that the main path of degradation is through holes, while the presence of H2O2 dec­reased and KBrO3 increased the efficiency of photocatalytic degradation com­pared with the system without the mentioned electron acceptors.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
M. J. Lazarević, “Photodegradation of selected pesticides: Photocatalytic activity of bare and PANI-modified TiO2 under simulated solar irradiation”, J. Serb. Chem. Soc., vol. 84, no. 12, pp. 1455–1468, Jan. 2020.
Section
Environmental Chemistry

References

K. Knauer, U. Hommen, Ecotox. Environ. Safe 89 (2013) 196 (http://dx.doi.org/10.1016/j.ecoenv.2012.11.030)

N. D. Banić, D. V. Šojić, J. B. Krstić, B. F. Abramović, Water Air Soil Poll. 225 (2014) 1954 (http://dx.doi.org/10.1007/s11270-014-1954-5)

N. D. Banić, B. F. Abramović, D. V. Šojić, J. B. Krstić, N. L. Finčur, I. P. Bočkovic, Chem. Eng. J. 286 (2016) 184 (http://dx.doi.org/10.1016/j.cej.2015.10.076)

U. Černigoj, U. Lavrenčič Štangar, P. Trebše, Appl. Catal., B-Environ. 75 (2007) 229 (http://dx.doi.org/10.1016/j.apcatb.2007.04.014)

U. Černigoj, U. Lavrenčič Štangar, J. Jirkovský, J. Hazard. Mater. 177 (2010) 399 (http://dx.doi.org/10.1016/j.jhazmat.2009.12.046)

R. Zanella, E. G. Prirnel, S. L. O. Machado, F. F. Goncalves, E. Marchezan, Chromatographia 55 (2002) 573 (http://dx.doi.org/10.1007/BF02492903)

T. L. Mervosh, G. K. Sims, E. W. Stollert, J. Agric. Food Chem. 43 (1995) 537 (http://dx.doi.org/10.1021/jf00050a052)

K. Grossmann, F. Scheltrup, Pestic. Sci. 52 (1998) 111 (http://dx.doi.org/10.1002/(SICI)1096-9063(199802)52:2<111::AID-PS695>3.0.CO;2-%23)

C. D. S. Tomlin, The Pesticide Manual: A World Compendium, 15th ed., British Crop Production Council, Alton, 2009, pp. 1006–1007 (ISBN: 9781901396188)

M. Franzén, K. Gustafsson, H. Hallqvist, L. Niemi, J. Wallander, C. Thorin, P. Örn, http://www2.jordbruksverket.se/webdav/files/SJV/trycksaker/Pdf_rapporter/ra07_21gb.pdf. (accessed 27. 12. 2007)

M. Mekhloufi, A. Zehhaf, A. Benyoucef, C. Quijada, E. Morallon, Environ. Monit. Assess. 185 (2013) 10365 (http://dx.doi.org/10.1007/s10661-013-3338-5)

H. Barchanska, M. Sajdak, K. Szczypka, A. Swientek, M. Tworek, M. Kurek, Environ. Sci. Pollut. Res. 24 (2017) 644 (http://dx.doi.org/10.1007/s11356-016-7798-3)

J. Bonnet, F. Bonnemoy, M. Dusser, J. Bohatier, Arch. Environ. Contam. Toxicol. 55 (2008) 576 (http://dx.doi.org/10.1007/s00244-008-9145-2)

E. Goujon, F. Bonnemoy, M. Dusser, J. Bohatier, Pestic. Biochem. Phys. 113 (2014) 47 (http://dx.doi.org/10.1016/j.pestbp.2014.06.002)

C. Sta, E. Goujon, E. Ferjani, G. Ledoigt, J. Agric. Food Chem. 62 (2014) 9 (http://dx.doi.org/10.1016/j.pestbp.2012.02.002)

A. Amalraj, A. Pius, J. Water Proc. Eng. 7 (2015) 94 (http://dx.doi.org/10.1016/j.jwpe.2015.06.002)

P. V. L. Reddy, K.-H. Kim, J. Hazard. Mater. 285 (2015) 325 (http://dx.doi.org/10.1016/j.jhazmat.2014.11.036)

G. Rammohan, M. N. Nadagouda, Curr. Org. Chem. 17 (2013) 2338 (http://dx.doi.org/10.2174/13852728113179990039)

M. Gmurek, M. Olak-Kucharczyk, S. Ledakowicz, Chem. Eng. J. 310 (2017) 437 (http://dx.doi.org/10.1016/j.cej.2016.05.014)

S. Malato, P. Fernández-Ibáñez, M. I. Maldonado, J. Blanco, W. Gernjak, Catal. Today 147 (2009) 1 (http://dx.doi.org/10.1016/j.cattod.2009.06.018)

S. Xiong, Q. Wang, H. Xia, Synthetic Met. 146 (2004) 37 (http://dx.doi.org/10.1016/j.synthmet.2004.06.017)

M. Radoičić, Z. Šaponjić, I. Janković, G. Ćirić-Marjanović, S. Ahrenkiel, M. Čomor, Appl. Catal., B-Environ. 136 (2013) 133 (http://dx.doi.org/10.1016/j.apcatb.2013.01.007)

B. Liu, Y. Fang, Z. Li, S. Xu, J. Nanosci. Nanotechnol. 15 (2015) 889 (http://dx.doi.org/10.1166/jnn.2015.9784)

Y. Deng, L. Tang, G. Zeng, H. Dong, M. Yan, J. Wang, Y. Zhou, J. Tang, Appl. Surf. Sci. 387 (2016) 882 (http://dx.doi.org/10.1016/j.apsusc.2016.07.026)

D. Šojić Merkulov, V. Despotović, N. Banić, S. Armaković, N. Finčur, M. Lazarević, D. Četojević-Simin, D. Orčić, M. Radoičić, Z. Šaponjić, M. Čomor, B. Abramović, Environ. Pollut. 239 (2018) 457 (http://dx.doi.org/10.1016/j.envpol.2018.04.039)

D. V. Šojić, D. Z. Orčić, D. D. Četojević-Simin, V. N. Despotović, B. F. Abramović, J. Mol. Catal., A-Chem. 392 (2014) 67 (http://dx.doi.org/10.1016/j.molcata.2014.04.033)

D. Šojić, V. Despotović, B. Abramović, N. Todorova, T. Giannakopoulou, C. Trapalis, Molecules 15 (2010) 2994 (http://dx.doi.org/10.3390/molecules15052994)

P. Skehan, R. Storeng, D. Scudiero, A. Monks, J. McMahon, D. Vistica, J. T. Warren, H. Bokesch, S. Kenney, M. R. Boyd, J. Natl. Cancer. Inst. 82 (1990) 1107 (http://dx.doi.org/10.1093/jnci/82.13.1107)

D. D. Četojević-Simin, A. S. Velićanski, D. D. Cvetković, S. L. Markov, J. Ž. Mrđanović, V. V. Bogdanović, S. V. Šolajić, Food Bioprocess Tech. 5 (2012) 1756 (http://dx.doi.org/10.1007/s11947-010-0458-6)

M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Chem. Rev. 95 (1995) 69 (https://doi.org/10.1021/cr00033a004)

D. D. Četojević-Simin, S. J. Armaković, D. V. Šojić, B. F. Abramović, Sci. Total Environ. 463 (2013) 968 (http://dx.doi.org/10.1016/j.scitotenv.2013.06.083)

I. Oller, S. Malato, J. A. Sánchez-Pérez, Sci. Total Environ. 409 (2011) 4141 (http://dx.doi.org/10.1016/j.scitotenv.2010.08.061)

M. Abdullah, G. K.-C. Low, R. W. Matthews, J. Phys. Chem. 94 (1990) 6820 (http://dx.doi.org/10.1021/j100380a051)

X. Z. Li, C. M. Fan, Y. P. Sun, Chemosphere 48 (2002) 453 (http://dx.doi.org/10.1016/S0045-6535(02)00135-2)

W. Wu, G. Shan, Q. Xiang, Y. Zhang, S. Yi, L. Zhu, Water Res. 122 (2017) 78 (http://dx.doi.org/10.1016/j.watres.2017.05.010)

D. V. Šojić, D. Z. Orčić, D. D. Četojević-Simin, N. D. Banić, B. F. Abramović, Chemosphere 138 (2015) 988 (http://dx.doi.org/10.1016/j.chemosphere.2014.12.042)

B. Abramović, V. Despotović, D. Šojić, N. Finčur, React. Kinet. Mech. Catal. 115 (2015) 67 (http://dx.doi.org/10.1007/s11144-014-0814-z)

I. Poulios, M. Kositzi, A. Kouras, J. Photochem. Photobiol., A 115 (1998) 175 (http://dx.doi.org/10.1016/S1010-6030(98)00259-7)

W. Chu, C. C. Wong, Water Res. 38 (2004) 1037 (http://dx.doi.org/10.1016/j.watres.2003.10.037)

M. M. Haque, M. Muneer, D. W. Bahnemann, Environ. Sci. Technol. 40 (2006) 4765 (http://dx.doi.org/10.1021/es060051h).

Most read articles by the same author(s)