Photodegradation of selected pesticides: Photocatalytic activity of bare and PANI-modified TiO2 under simulated solar irradiation

Marina J. Lazarević, Vesna N. Despotović, Daniela V. Šojić Merkulov, Nemanja D. Banić, Nina L. Finčur, Dragana D. Četojević-Simin, Mirjana I. Čomor, Biljana F Abramović

Abstract


In this paper the efficiency of photocatalytic degradation of different pesticides was investigated using bare TiO2 and modified TiO2 nanoparticles with polyaniline under the simulated solar irradiation. Sulcotrione has shown the highest percentage of degradation and further experiments were related to this herbicide. Mineralization and cytotoxicity of starting compound and intermediate species formed during the decomposition in double distilled water (DDW), as well as efficiency of removal from various environmental waters were studied. Content of the most abundant ions present in river Danube was simulated in DDW and their influence was evaluated. It was found that cytotoxicity was in all cases below 11 % and the efficiency of photocatalytic degradation in environ­mental waters decreased compared with DDW. Furthermore, addition of different scavengers revealed that the main path of degradation is through holes, while the presence of H2O2 decrease and KBrO3 increase the efficiency of photocatalytic degradation compared with the system without mentioned electron acceptors.

Keywords


pesticides; bare TiO2 nanoparticle; TiO2/polyaniline nanocomposite; citotoxicity; environmental waters; radical, hole, and electron scavengers

Full Text:

PDF (1,684 kB)

References


K. Knauer, and U. Hommen, Ecotox. Environ. Safe 89 (2013) 196 (http://dx.doi.org/10.1016/j.ecoenv.2012.11.030)

N. D. Banić, D. V. Šojić, J. B. Krstić, B. F. Abramović, Water Air Soil Poll. 225 (2014) 1954 (http://dx.doi.org/10.1007/s11270-014-1954-5)

N. D. Banić, B. F. Abramović, D. V. Šojić, J. B. Krstić, N. L. Finčur, I. P. Bočkovic, Chem. Eng. J. 286 (2016) 184 (http://dx.doi.org/10.1016/j.cej.2015.10.076)

U. Černigoj, U. Lavrenčič Štangar, P. Trebše, Appl. Catal. B-Environ. 75 (2007) 229 (http://dx.doi.org/10.1016/j.apcatb.2007.04.014)

U. Černigoj, U. Lavrenčič Štangar, J. Jirkovský, J. Hazard. Mater. 177 (2010) 399 (http://dx.doi.org/10.1016/j.jhazmat.2009.12.046)

R. Zanella, E. G. Prirnel, S. L. O. Machado, F. F. Goncalves, E. Marchezan, Chromatographia 55 (2002) 573 (http://dx.doi.org/10.1007/BF02492903)

T. L. Mervosh, G. K. Sims, E. W. Stollert, J. Agr. Food Chem. 43 (1995) 537 (http://dx.doi.org/10.1021/jf00050a052)

K. Grossmann, F. Scheltrup, Pestic. Sci. 52 (1998) 111 (http://dx.doi.org/10.1002/(SICI)1096-9063(199802)52:2<111::AID-PS695>3.0.CO;2-%23)

C. D. S. Tomlin, The Pesticide Manual: A World Compendium ed. fifteenth, Hampshire, 2009, p. 1006–1007

M. Franzén, K. Gustafsson, H. Hallqvist, L. Niemi, J. Wallander, C. Thorin, P. Örn, http://www2.jordbruksverket.se/webdav/files/SJV/trycksaker/Pdf_rapporter/ra07_21gb.pdf. (27. 12. 2007)

M. Mekhloufi, A. Zehhaf, A. Benyoucef, C. Quijada, E. Morallon, Environ. Monit. Assess. 185 (2013) 10365 (http://dx.doi.org/10.1007/s10661-013-3338-5)

H. Barchanska, M. Sajdak, K. Szczypka, A. Swientek, M. Tworek, M. Kurek, Environ. Sci. Pollut. Res. 24 (2017) 644 (http://dx.doi.org/10.1007/s11356-016-7798-3)

J. Bonnet, F. Bonnemoy, M. Dusser, J. Bohatier, Arch. Environ. Contam. Toxicol. 55 (2008) 576 (http://dx.doi.org/10.1007/s00244-008-9145-2)

E. Goujon, F. Bonnemoy, M. Dusser, J. Bohatier, Pestic. Biochem. Phys. 113 (2014) 47 (http://dx.doi.org/10.1016/j.pestbp.2014.06.002)

C. Sta, E. Goujon, E. Ferjani, G. Ledoigt, J. Agric. Food Chem. 62 (2014) 9 (http://dx.doi.org/10.1016/j.pestbp.2012.02.002)

A. Amalraj, A. Pius, J. Water Proc. Eng. 7 (2015) 94 (http://dx.doi.org/10.1016/j.jwpe.2015.06.002)

P. V. L. Reddy, K.-H. Kim, J. Hazard. Mater. 285 (2015) 325 (http://dx.doi.org/10.1016/j.jhazmat.2014.11.036)

G. Rammohan, M. N. Nadagouda, Curr. Org. Chem. 17 (2013) 2338 (http://dx.doi.org/10.2174/13852728113179990039)

M. Gmurek, M. Olak-Kucharczyk, S. Ledakowicz, Chem. Eng. J. 310 (2017) 437 (http://dx.doi.org/10.1016/j.cej.2016.05.014)

S. Malato, P. Fernández-Ibáñez, M. I. Maldonado, J. Blanco, W. Gernjak, Catal. Today 147 (2009) 1 (http://dx.doi.org/10.1016/j.cattod.2009.06.018)

S. Xiong, Q. Wang, H. Xia, Synthetic Met. 146 (2004) 37 (http://dx.doi.org/10.1016/j.synthmet.2004.06.017)

M. Radoičić, Z. Šaponjić, I. Janković, G. Ćirić-Marjanović, S. Ahrenkiel, M. Čomor, Appl. Catal. B-Environ. 136 (2013) 133 (http://dx.doi.org/10.1016/j.apcatb.2013.01.007)

B. Liu, Y. Fang, Z. Li, S. Xu, J. Nanosci. Nanotechno. 15 (2015) 889 (http://dx.doi.org/10.1166/jnn.2015.9784)

Y. Deng, L. Tang, G. Zeng, H. Dong, M. Yan, J. Wang, Y. Zhou, J. Tang, Appl. Surf. Sci. 387 (2016) 882 (http://dx.doi.org/10.1016/j.apsusc.2016.07.026)

D. Šojić Merkulov, V. Despotović, N. Banić, S. Armaković, N. Finčur, M. Lazarević, D. Četojević-Simin, D. Orčić, M. Radoičić, Z. Šaponjić, M. Čomor, B. Abramović, Environ. Pollut. 239 (2018) 457 (http://dx.doi.org/10.1016/j.envpol.2018.04.039)

D. V. Šojić, D. Z. Orčić, D. D. Četojević-Simin, V. N. Despotović, B. F. Abramović, J. Mol. Catal. A-Chem. 392 (2014) 67 (http://dx.doi.org/10.1016/j.molcata.2014.04.033)

D. Šojić, V. Despotović, B. Abramović, N. Todorova, T. Giannakopoulou, C. Trapalis, Molecules 15 (2010) 2994 (http://dx.doi.org/10.3390/molecules15052994)

P. Skehan, R. Storeng, D. Scudiero, A. Monks, J. McMahon, D. Vistica, J. T. Warren, H. Bokesch, S. Kenney, M. R. Boyd, J. Natl. Cancer. I., 82 (1990) 1107 (http://dx.doi.org/10.1093/jnci/82.13.1107)

D. D. Četojević-Simin, A. S. Velićanski, D. D. Cvetković, S. L. Markov, J. Ž. Mrđanović, V. V. Bogdanović, S. V. Šolajić, Food Bioprocess Tech. 5 (2012) 1756 (http://dx.doi.org/10.1007/s11947-010-0458-6)

M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Chem. Rev. 95 (1995) 69 (https://doi.org/10.1021/cr00033a004)

D. D. Četojević-Simin, S. J. Armaković, D. V. Šojić, B. F. Abramović, Sci. Total Environ. 463 (2013) 968 (http://dx.doi.org/10.1016/j.scitotenv.2013.06.083)

I. Oller, S. Malato, J. A. Sánchez-Pérez, Sci. Total Environ. 409 (2011) 4141 (http://dx.doi.org/10.1016/j.scitotenv.2010.08.061)

M. Abdullah, G. K.-C. Low, R. W. Matthews, J. Phys. Chem. 94 (1990) 6820 (http://dx.doi.org/10.1021/j100380a051)

X. Z. Li, C. M. Fan, Y. P. Sun, Chemosphere 48 (2002) 453 (http://dx.doi.org/10.1016/S0045-6535(02)00135-2)

W. Wu, G. Shan, Q. Xiang, Y. Zhang, S. Yi, L. Zhu, Water Res. 122 (2017) 78 (http://dx.doi.org/10.1016/j.watres.2017.05.010)

D. V. Šojić, D. Z. Orčić, D. D. Četojević-Simin, N. D. Banić, B. F. Abramović, Chemosphere 138 (2015) 988 (http://dx.doi.org/10.1016/j.chemosphere.2014.12.042)

B. Abramović, V. Despotović, D. Šojić, N. Finčur, React. Kinet. Mech. Cat. 115 (2015) 67 (http://dx.doi.org/10.1007/s11144-014-0814-z)

I. Poulios, M. Kositzi, A. Kouras, J. Photochem. Photobiol. A 115 (1998) 175 (http://dx.doi.org/10.1016/S1010-6030(98)00259-7)

W. Chu, C. C. Wong, Water Res. 38 (2004) 1037 (http://dx.doi.org/10.1016/j.watres.2003.10.037)

M. M. Haque, M. Muneer, D. W. Bahnemann, Environ. Sci. Technol. 40 (2006) 4765 (http://dx.doi.org/10.1021/es060051h).




DOI: https://doi.org/10.2298/JSC190301083L

Copyright (c) 2019 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)