Sulfate radicals based degradation of the antraquinone textile dye in a plug flow photoreactor

Jelena Mitrović, Miljana Radović Vučić, Miloš Kostić, Nena Velinov, Slobodan Najdanović, Danijela Bojić, Aleksandar Bojić

Abstract


The study evaluated the degradation of antraquinone textile dye Reactive Blue 19, frequently used dye in the textile industry, by means of sulfate radicals. Sulfate radicals were generated by activation of peroxydisulfate with UV-C (254 nm) irradiation. The UV irradiation alone did not affect removal efficiency, while with addition of the oxidant removal efficiency was significantly improved. The degradation rates of textile dye increased at higher initial dosages of oxidant, while the opposite trend was observed in the case of increase in the initial dye concentration. Acidic conditions were more convenient for degradation of the dye then neutral and basic. Degradation of the textile dye was not affected by the presence of bicarbonate and chloride anions within the concentrations range from 1 up to 200 mmol∙L-1. The presence of carbonate showed suppressing effect on the removal efficiency especially at carbonate levels below 20 mmol∙L-1. However, at carbonate levels greater than 20 mmol∙L-1, dye removal efficiency increased. The use of methanol and tert-butyl alcohol as the scavengers revealed that both radicals, HOand SO4•-, would be generated depending on initial pH value оf dye solution.


Keywords


advanced oxidation processes; Reactive Blue 19; carbonate/bi¬carbonate, chloride

Full Text:

PDF (1,653 kB)

References


P. Navaro, J. A. Gabaldon, V. M. Gomez-Lopez, Dyes Pigm. 136 (2017) 887 (https://doi.org/10.1016/j.dyepig.2016.09.053)

S. K. A. Solmaz, A. Birgül, G. E. Üstün, T. Yonar, Color. Technol. 122 (2006) 02 (https://doi.org/10.1111/j.1478-4408.2006.00016.x)

L. Bili´nska, M. Gmurek, S. Ledakowicz, Process Saf. Environ. 109 (2017) 420 (https://doi.org/10.1016/j.psep.2017.04.019)

J. R. Torres-Luna, R. Ocampo-Perez, M. Sanchez-Polo, J. Rivera Utrilla, I. Velo-Gala, L. A. Bernal-Jacome, Chem. Eng. J. 223 (2013) 155 (10.1016/j.cej.2013.02.127)

D. Rajkumar, B. J. Song, J. G. Kim, Dyes Pigm. 71 (2007) 935 (https://doi.org/10.1016/j.dyepig.2005.07.015)

G. Boczkaj and A. Fernandes, Chem. Eng. J. 320 (2017) 608 (https://doi.org/10.1016/j.cej.2017.03.084)

G. V. Buxton, C. L. Greenstock, W. P. Helman, A. B. Ross, J. Phys. Chem. Ref. Data, 17(2) (1988) 513 (10.1063/1.555805)

J. Sharma, I. M. Mishra, V. Kumar, J. Environ. Manage. 166 (2016) 12 (https://doi.org/10.1016/j.jenvman.2015.09.043)

J. Wang, S. Wang, Chem. Eng. J. 334 (2018) 1502 (https://doi.org/10.1016/j.cej.2017.11.059)

S. Dhaka, R. Kumar, M. A. Khan, K.-J. Paeng, M. B. Kurade, S.-J. Kim, B.-H. Jeon, Chem. Eng. J. 321 (2017) 11 (https://doi.org/10.1016/j.cej.2017.03.085)

C. Qi, X. Liu, J. Ma, C. Lin, X. Li, H. Zhang, Chemosphere 151 (2016) 280 (https://doi.org/10.1016/j.chemosphere.2016.02.089)

L. Liu, S. Lina, W. Zhanga, U. Farooq, G. Shen, S. Huc, Chem. Eng. J. 346 (2018) 515 (https://doi.org/10.1016/j.cej.2018.04.068)

G. P. Anipsitakis, D. D. Dionysiou, Appl. Catal. B 54 (2004) 155 (https://doi.org/10.1016/j.apcatb.2004.05.025)

X. Pan, L. Yan, R. Qu, Z. Wang, Chemosphere 196 (2018) 95 (https://doi.org/10.1016/j.chemosphere.2017.12.152)

J. Sharma, I. M. Mishra, V. Kumar, J. Environ. Manage. 156 (2015) 266 (https://doi.org/10.1016/j.jenvman.2015.03.048)

L. W. Matzek, K. E. Carter, Chemosphere 151 (2016) 178 (https://doi.org/10.1016/j.chemosphere.2016.02.055)

L. R. Bennedsen, J. Muff, E. G. Søgaard, Chemosphere 86 (2012) 1092 (https://doi.org/10.1016/j.chemosphere.2011.12.011)

P. Devi, U. Das, A. K. Dalai, Sci. Total Environ. 571 (2016) 643 (https://doi.org/10.1016/j.scitotenv.2016.07.032)

Z. Wang, Y. Shao, N. Gao, X. Lu, N. An, Chemosphere 193 (2018) 602 (https://doi.org/10.1016/j.chemosphere.2017.11.075)

C. Almquist, S. Fyda, N. Godby, M. E. Miller, Environ. Prog. Sustain. Energy 36(3) (2017) 857 (https://doi.org/10.1002/ep.12525)

J.-M. Fanchiang, D.-H. Tseng, Chemosphere 77 (2009) 214 (https://doi.org/10.1016/j.chemosphere.2009.07.038)

Z. Zuo, Z. Cai, Y. Katsumura, N. Chitose, Y. Muroya, Radiat. Phys. Chem. 55 (1) (1999) 15 (https://doi.org/10.1016/S0969-806X(98)00308-9)

C. Tana, D. Fua, N. Gaob, Q. Qin, Y. Xu, H. Xiang, J. Photochem. Photobiol. A Chem. 332 (2017) 406 (https://doi.org/10.1016/j.jphotochem.2016.09.021)

C. Liang and H.-W. Su, Ind. Eng. Chem. Res. 48 (2009) 5558 (https://doi.org/10.1021/ie9002848)

J. B. Mccallum, S. A. Madison, S. Alkan, R. L. Depinto, R. U. Rojas Wahl, Environ. Sci. Technol. 34 (2000) 5157 (https://doi.org/10.1021/es0008665)

M. V. N. Mouamfon, W. Li, S. Lu, Z. Qiu, N. Chen, K. Lin, Environ. Technol. 31 (2010) 489 (https://doi.org/10.1080/09593330903514854)

M. H. Rasoulifard, M. Fazli, M. R. Eskandarian, J. Ind. Eng. Chem. 24 (2015) 121 (https://doi.org/10.1016/j.jiec.2014.09.018)

Z. He, L. Lin, S. Song, M. Xia, L. Xu, H. Ying, J. Chen, Sep. Purif. Technol. 62 (2008) 376 (https://doi.org/10.1016/j.seppur.2008.02.005)

F. Wang, W. Wang, S. Yuan, W. Wanga, Z-H. Hua, J. Photochem. Photobiol. A Chem. 348 (2017) 79 (https://doi.org/10.1016/j.jphotochem.2017.08.023)

J. Sharma, I. M. Mishra, D. D. Dionysiou, V. Kumar, Chem. Eng. J. 276 (2015) 193 (https://doi.org/10.1016/j.cej.2015.04.021)

Z. Wang, Y. Shaoa, N. Gao, N. An, Sep. Purif. Technol. 195 (2018) 92 (https://doi.org/10.1016/j.seppur.2017.11.072)

G. P. Anipsitakis, D. D. Dionysiou, Environ. Sci. Technol. 38 (2004) 3705 (https://doi.org/10.1021/es035121o)

A. Ghauch, A. M. Tuqan, Chem. Eng. J. 183 (2012) 162 (https://doi.org/10.1016/j.cej.2011.12.048)

G. V. Buxton, A. J. Elliot, Int J Radiat Appl Instrum C Radiat Phys Chem 27 (3) (1986) 241 (https://doi.org/10.1016/1359-0197(86)90059-7)

J. L. Weeks, J. Rabani, J. Phys. Chem. 70 (7) (1966) 2100 (https://doi.org/10.1021/j100879a005)

S. Dhaka, R. Kumar, S.-H. Lee, M. B. Kurade, B.-H. Jeon, J. Clean. Prod. 180 (2018) 505 (https://doi.org/10.1016/j.jclepro.2018.01.197)

F. Rehman, M. Sayed, J. A. Khan, N. S. Shah, H. M. Khan, D. D. Dionysioua, J. Hazard. Mater. 357 (2018) 506 (https://doi.org/10.1016/j.jhazmat.2018.06.012)

R. E. Huie, C. L. Clifton, P. Neta, Radiat. Phys. Chem. 38(5) (1991) 477 (https://doi.org/10.1016/1359-0197(91)90065-A)

J. Kiwi, A. Lopez, V. Nadtochenko, Environ. Sci. Technol. 34 (11) (2000) 2162 (https://doi.org/10.1021/es991406i)

G. Jayson, B. Parsons, A. J. Swallow, J. Chem. Soci., Faraday Trans. 1: Phys. Chem. Conden. Phases 69 (1973) 1597 (https://doi.org/10.1039/F19736901597)

L. Liu, S. Lina, W. Zhanga, U. Farooq, G. Shen, S. Hu, Chem. Eng. J. 346 (2018) 515 (https://doi.org/10.1016/j.cej.2018.04.068)

Y. Xu, Z. Lin, H. Zhang, Chem. Eng. J. 285 (2016) 392 (https://doi.org/10.1016/j.cej.2015.09.091)

L. Hu, G. Zhang, M. Liu, Q. Wang, P. Wang, Chem. Eng. J. 338 (2018) 300 (https://doi.org/10.1016/j.cej.2018.01.016)




DOI: https://doi.org/10.2298/JSC190313035M

Copyright (c) 2019 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.797 (139 of 171 journals)
5 Year Impact Factor 0.923 (134 of 171 journals)