Sulfate radical-based degradation of antraquinone textile dye in a plug flow photoreactor

Main Article Content

Jelena Mitrović
https://orcid.org/0000-0001-9634-7727
Miljana Radović Vučić
Miloš Kostić
Nena Velinov
Slobodan Najdanović
Danijela Bojić
Aleksandar Bojić

Abstract

The study evaluated the degradation of the antraquinone textile dye reactive blue 19, a frequently used dye in the textile industry, by means of sulfate radicals. Sulfate radicals were generated by activation of peroxydi­sul­fate with UV-C (254 nm) irradiation. UV irradiation alone did not affect the removal efficiency, while with the addition of an oxidant, the removal effi­ciency was significantly improved. The degradation rates of the textile dye inc­reased at higher initial dosages of oxidant, while the opposite trend was obs­erved in the case of increasing initial dye concentration. Acidic conditions were more convenient for degradation of the dye then neutral or basic. Degradation of the textile dye was not affected by the presence of bicarbonate and chloride anions within the concentrations range from 1 to 200 mmol∙L-1. The presence of carbonate showed a suppressing effect on the removal efficiency, especially at carbonate levels below 20 mmol∙L-1. However, at carbonate levels greater than 20 mmol∙L-1, the dye removal efficiency increased. The use of methanol and tert-butanol as scavengers revealed that both radicals, HO· and SO4·-, would be generated depending on initial pH value of the dye solution.

 

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
J. Mitrović, “Sulfate radical-based degradation of antraquinone textile dye in a plug flow photoreactor”, J. Serb. Chem. Soc., vol. 84, no. 9, pp. 1041–1054, Oct. 2019.
Section
Environmental Chemistry

References

P. Navaro, J. A. Gabaldon, V. M. Gomez-Lopez, Dyes Pigm. 136 (2017) 887 (https://doi.org/10.1016/j.dyepig.2016.09.053)

S. K. A. Solmaz, A. Birgül, G. E. Üstün, T. Yonar, Color. Technol. 122 (2006) 02 (https://doi.org/10.1111/j.1478-4408.2006.00016.x)

L. Bili´nska, M. Gmurek, S. Ledakowicz, Process Saf. Environ. 109 (2017) 420 (https://doi.org/10.1016/j.psep.2017.04.019)

J. R. Torres-Luna, R. Ocampo-Perez, M. Sanchez-Polo, J. Rivera Utrilla, I. Velo-Gala, L. A. Bernal-Jacome, Chem. Eng. J. 223 (2013) 155 (10.1016/j.cej.2013.02.127)

D. Rajkumar, B. J. Song, J. G. Kim, Dyes Pigm. 71 (2007) 935 (https://doi.org/10.1016/j.dyepig.2005.07.015)

G. Boczkaj, A. Fernandes, Chem. Eng. J. 320 (2017) 608 (https://doi.org/10.1016/j.cej.2017.03.084)

G. V. Buxton, C. L. Greenstock, W. P. Helman, A. B. Ross, J. Phys. Chem. Ref. Data 17 (1988) 513 (10.1063/1.555805)

J. Sharma, I. M. Mishra, V. Kumar, J. Environ. Manage. 166 (2016) 12 (https://doi.org/10.1016/j.jenvman.2015.09.043)

J. Wang, S. Wang, Chem. Eng. J. 334 (2018) 1502 (https://doi.org/10.1016/j.cej.2017.11.059)

S. Dhaka, R. Kumar, M. A. Khan, K.-J. Paeng, M. B. Kurade, S.-J. Kim, B.-H. Jeon, Chem. Eng. J. 321 (2017) 11 (https://doi.org/10.1016/j.cej.2017.03.085)

C. Qi, X. Liu, J. Ma, C. Lin, X. Li, H. Zhang, Chemosphere 151 (2016) 280 (https://doi.org/10.1016/j.chemosphere.2016.02.089)

L. Liu, S. Lina, W. Zhanga, U. Farooq, G. Shen, S. Huc, Chem. Eng. J. 346 (2018) 515 (https://doi.org/10.1016/j.cej.2018.04.068)

G. P. Anipsitakis, D. D. Dionysiou, Appl. Catal., B 54 (2004) 155 (https://doi.org/10.1016/j.apcatb.2004.05.025)

X. Pan, L. Yan, R. Qu, Z. Wang, Chemosphere 196 (2018) 95 (https://doi.org/10.1016/j.chemosphere.2017.12.152)

J. Sharma, I. M. Mishra, V. Kumar, J. Environ. Manage. 156 (2015) 266 (https://doi.org/10.1016/j.jenvman.2015.03.048)

L. W. Matzek, K. E. Carter, Chemosphere 151 (2016) 178 (https://doi.org/10.1016/j.chemosphere.2016.02.055)

L. R. Bennedsen, J. Muff, E. G. Søgaard, Chemosphere 86 (2012) 1092 (https://doi.org/10.1016/j.chemosphere.2011.12.011)

P. Devi, U. Das, A. K. Dalai, Sci. Total Environ. 571 (2016) 643 (https://doi.org/10.1016/j.scitotenv.2016.07.032)

Z. Wang, Y. Shao, N. Gao, X. Lu, N. An, Chemosphere 193 (2018) 602 (https://doi.org/10.1016/j.chemosphere.2017.11.075)

C. Almquist, S. Fyda, N. Godby, M. E. Miller, Environ. Prog. Sustain. Energy 36 (2017) 857 (https://doi.org/10.1002/ep.12525)

J.-M. Fanchiang, D.-H. Tseng, Chemosphere 77 (2009) 214 (https://doi.org/10.1016/j.chemosphere.2009.07.038)

Z. Zuo, Z. Cai, Y. Katsumura, N. Chitose, Y. Muroya, Radiat. Phys. Chem. 55 (1999) 15 (https://doi.org/10.1016/S0969-806X(98)00308-9)

C. Tana, D. Fua, N. Gaob, Q. Qin, Y. Xu, H. Xiang, J. Photochem. Photobiol., A: Chem. 332 (2017) 406 (https://doi.org/10.1016/j.jphotochem.2016.09.021)

C. Liang, H.-W. Su, Ind. Eng. Chem. Res. 48 (2009) 5558 (https://doi.org/10.1021/ie9002848)

J. B. McCallum, S. A. Madison, S. Alkan, R. L. Depinto, R. U. Rojas Wahl, Environ. Sci. Technol. 34 (2000) 5157 (https://doi.org/10.1021/es0008665)

M. V. N. Mouamfon, W. Li, S. Lu, Z. Qiu, N. Chen, K. Lin, Environ. Technol. 31 (2010) 489 (https://doi.org/10.1080/09593330903514854)

M. H. Rasoulifard, M. Fazli, M. R. Eskandarian, J. Ind. Eng. Chem. 24 (2015) 121 (https://doi.org/10.1016/j.jiec.2014.09.018)

Z. He, L. Lin, S. Song, M. Xia, L. Xu, H. Ying, J. Chen, Sep. Purif. Technol. 62 (2008) 376 (https://doi.org/10.1016/j.seppur.2008.02.005)

F. Wang, W. Wang, S. Yuan, W. Wanga, Z-H. Hua, J. Photochem. Photobiol., A: Chem. 348 (2017) 79 (https://doi.org/10.1016/j.jphotochem.2017.08.023)

J. Sharma, I. M. Mishra, D. D. Dionysiou, V. Kumar, Chem. Eng. J. 276 (2015) 193 (https://doi.org/10.1016/j.cej.2015.04.021)

Z. Wang, Y. Shaoa, N. Gao, N. An, Sep. Purif. Technol. 195 (2018) 92 (https://doi.org/10.1016/j.seppur.2017.11.072)

G. P. Anipsitakis, D. D. Dionysiou, Environ. Sci. Technol. 38 (2004) 3705 (https://doi.org/10.1021/es035121o)

A. Ghauch, A. M. Tuqan, Chem. Eng. J. 183 (2012) 162 (https://doi.org/10.1016/j.cej.2011.12.048)

G. V. Buxton, A. J. Elliot, Int. J. Radiat. Appl. Instrum., C: Radiat .Phys. Chem. 27 (1986) 241 (https://doi.org/10.1016/1359-0197(86)90059-7)

J. L. Weeks, J. Rabani, J. Phys. Chem. 70 (1966) 2100 (https://doi.org/10.1021/j100879a005)

S. Dhaka, R. Kumar, S.-H. Lee, M. B. Kurade, B.-H. Jeon, J. Clean. Prod. 180 (2018) 505 (https://doi.org/10.1016/j.jclepro.2018.01.197)

F. Rehman, M. Sayed, J. A. Khan, N. S. Shah, H. M. Khan, D. D. Dionysioua, J. Hazard. Mater. 357 (2018) 506 (https://doi.org/10.1016/j.jhazmat.2018.06.012)

R. E. Huie, C. L. Clifton, P. Neta, Radiat. Phys. Chem. 38 (1991) 477 (https://doi.org/10.1016/1359-0197(91)90065-A)

J. Kiwi, A. Lopez, V. Nadtochenko, Environ. Sci. Technol. 34 (2000) 2162 (https://doi.org/10.1021/es991406i)

G. Jayson, B. Parsons, A. J. Swallow, J. Chem. Soc., Faraday Trans. 1: Phys. Chem. Conden. Phases 69 (1973) 1597 (https://doi.org/10.1039/F19736901597)

L. Liu, S. Lina, W. Zhanga, U. Farooq, G. Shen, S. Hu, Chem. Eng. J. 346 (2018) 515 (https://doi.org/10.1016/j.cej.2018.04.068)

Y. Xu, Z. Lin, H. Zhang, Chem. Eng. J. 285 (2016) 392 (https://doi.org/10.1016/j.cej.2015.09.091)

L. Hu, G. Zhang, M. Liu, Q. Wang, P. Wang, Chem. Eng. J. 338 (2018) 300 (https://doi.org/10.1016/j.cej.2018.01.016).

Most read articles by the same author(s)