Electrogenerated base-promoted synthesis of 4-aryl-5-benzoyl-2-hydroxy-6-(trifluoromethyl)-1,4-dihydropy¬ridine-3-carbonitriles nanoparticles by three-component condensation of aromatic aldehydes, malononitrile and 4,4,4-trifluoro-1-phenylbutane-1,3-dione

Main Article Content

Esmaeil Goodarzi
Behrooz Mirza

Abstract

An electrochemical strategy to the synthesis of novel 4-aryl-5-ben­zoyl-2-hydroxy-6-(trifluoromethyl)-1,4-dihydropyridine-3-carbonitriles nano­par­ti­cles via three-component reaction of aromatic aldehydes, malononitrile and 4,4,4-tri­fluoro-1-phenylbutane-1,3-dione in water/ethanol in an undivided cell in the presence of sodium bromide as an electrolyte is described. This method has several advantages, such as high to excellent product yields
(65–85 %), atom economy, environment friendly, and no need for chromatographic separations
.

Downloads

Metrics

PDF views
332
Feb 13 '20Feb 16 '20Feb 19 '20Feb 22 '20Feb 25 '20Feb 28 '20Mar 01 '20Mar 04 '20Mar 07 '20Mar 10 '20Mar 13 '202.0
| |

Article Details

How to Cite
[1]
E. Goodarzi and B. Mirza, “Electrogenerated base-promoted synthesis of 4-aryl-5-benzoyl-2-hydroxy-6-(trifluoromethyl)-1,4-dihydropy¬ridine-3-carbonitriles nanoparticles by three-component condensation of aromatic aldehydes, malononitrile and 4,4,4-trifluoro-1-phenylbutane-1,3-dione”, J. Serb. Chem. Soc., vol. 85, no. 1, pp. 79–87, Feb. 2020.
Section
Electrochemistry

References

B. M. Trost, Science 254 (1991)1471 (https://dx.doi.org/ 10.1126/science.1962206)

H. Bienayme, C. Hulme, G. Oddon, P. Schmidt, Chem. Eur. J. 6 (2000) 3321 (https://dx.doi.org/10.1002/1521-3765(20000915)6:18<3321::AID-CHEM3321>3.0.CO;2-A)

A. J. Von Wangelin, H. Neumann, D. Gördes, S. Klaus, D. Strübing, M. Beller, Chem. Eur. J. 9 (2003) 4286 (https://dx.doi.org/ 10.1002/chem.200305048)

R. V. A. Orru, M. de Greef, Synthesis (2003) 1471 (https://dx.doi.org/ 10.1055/s-2003-40507)

M. N. Elinson, A. S. Dorofeev, F. M. Miloserdov G. I. Nikishin, Mol. Diversity 13 (2009) 47 (https://dx.doi.org/ 10.1007/s11030-008-9100-1)

M. N. Elinson, A. I. Ilovsaiky, A. S. Dorofeev, V. M. Merkulova, N. O. Stepanov, F. M. Miloserdov, Y. N. Ogibin, G. I. Nikishin, Tetrahedron 63 (2007) 10543 (https://dx.doi.org/10.1016/j.tet.2007.07.080)

L. Wang, J. Gao, L. Wan, Y. Wang, C. Yao, Res. Chem. Intermed. 41 (2015) 2775 (https://dx.doi.org/10.1007/s11164-013-1387-6)

M. N. Elinson, A. S. Dorofeev, F. M. Miloserdov, A. I. Ilovaisky, S. K. Feducovich, P. A. Belyakov, G. I. Nikishin, Adv. Synth. Catal. 350 (2008) 591 (https://dx.doi.org/ 10.1007/s11030-009-9207-z)

S. Makarem, A. R. Fakhari, A. A. Mohammadi, Ind. Eng. Chem. Res. 51 (2012) 2200 (https://dx.doi.org/10.1021/ie200997b)

F. Bossert, H. Meyer, E. Wehinger, Angew. Chem. Int. Ed. Engl. 20 (1981) 762 (https://dx.doi.org/10.1002/anie.198107621)

R. Mannhol, B. Jablonk, W. Voigdt, K. Schoenafinger, K. Schrava, Eur. J. Med. Chem. 27 (1992) 229 (https://dx.doi.org/10.1016/0223-5234(92)90006-M)

G. L. Reid, P. A. Meredith, F. Pasanisi, J. Cardiovasc. Pharmacol. 7 (1985) S18 (https://journals.lww.com/cardiovascularpharm/Abstract/1985/07004/Clinical_Pharmacological_Aspects_of_Calcium.4.aspx)

R. Shan, C. Velazquez, E. Knaus, J. Med. Chem. 47 (2004) 254 (https://dx.doi.org/ 10.1021/jm030333h)

M. Kawase, A. Shah, H. Gaveriya, N. Motohashi, H. Sakagami, A. Varga, J. Molnar Bioorg. Med. Chem. 10 (2002)1051 (https://dx.doi.org/10.1016/S0968-0896(01)00363-7)

T. Hiyama, in Organofluorine Compounds, H. Yamamoto, Ed., Springer Verlag, Berlin, 2000, p. 137 (https://dx.doi.org/10.1007/978-3-662-04164-2)

Fluorine in Bioorganic Chemistry, J. T. Welch, S. Eswarakrishnan, Eds., Wiley, New York, 1991

J. Prabhakaran, M. D. Underwood, R. V. Parsey, V. Arango, V. J. Majo, N. R. Simpson, R. V. Heertum, J. J. Mann, J. S. D. Kumar, Biorg. Med. Chem. 15 (2007) 1802 (https://dx.doi.org/10.1016/j.bmc.2006.11.033).

X. Liu, C. Xu, M. Wang, Q. Liu, Chem. Rev. 115 (2015) 683 (https://dx.doi.org/10.1021/cr400473a)

R. Dey, S. Sultana, B. Bishayi, J. Neuroimmunol. 316 (2018) 23 (https://dx.doi.org/10.1016/j.jneuroim.2017.12.006)

G. Russo, G. M. Paganotti, S. Soeria-Atmadja, M. Haverkamp, D. Ramogola-Masire, V. Vullo, L. L. Gustafsson, Infect., Genet. Evol. 192 (2016) 207 (https://dx.doi.org/10.1016/j.meegid.2015.11.014)

K. J. Palmer, S. M. Holliday, R. N. Brogden, Drugs 1993 (1993) 430 (https://dx.doi.org/10.2165/00003495-199345030-00009)

J. Hasskarl, Recent Results Cancer Res. 201 (2014) 145 (ISSN: 0080-0015)

T. Mohaddeseh, B. Mirza, M. Zeeb, J. Nanostruct. Chem. 8 (2018) 421 (https://dx.doi.org/10.1007/s40097-018-0282-5)

G. Esmaeil, B. Mirza, J. Chem. Res. 42 (2018) 521 (https://dx.doi.org/10.3184/174751918X15385231933446).

Z. M. Darvish, B. Mirza, S. Makarem, J. Heterocycl. Chem. 54 (2017) 1763 (https://doi.org/10.1002/jhet.2755)

D. Nematollahi, J. Azizian, M. Сargordan-Arani, M. Hesari, S. Јameh-Bozorghi, A. Alizadeh, L. Fotohi, B. Mirza, Chem. Pharm. Bull. 56 (2008) 1562 (https://dx.doi.org/10.1248/cpb.56.1562)

S. Makarem, B. Mirza, Z. Mohammad Darvish, N. Amiri Notash, S. Ashrafi, Anal. Bioanal. Chem. Res. 6 (2019) 231 (https://dx.doi.org/10.22036/abcr.2018.142244.1230).