SSCCS– radical: Renner–Teller effect and spin–orbit coupling in the X 2Πu electronic state

Stanka Violeta Jerosimić, Marko Mitić, Milan Milovanović

Abstract


SCCS- was detected by laser-induced fluorescence spectroscopy in 2003 (M. Nakajima, Y. Yoneda, Y. Sumiyoshi, T. Nagata, Y. Endo, J. Chem. Phys. 119 (2003) 7805) and its spectrum was analyzed and the results pre­sented together with ab initio calculations data. Symmetrical stretching vibrat­ions were assigned in both the ground X 2Πu and the first excited A 2Πg elec­tronic states, but no data about spin–orbit splitting and bending vibrational modes were given. In the present work, the vibronic levels in the ground elec­tronic state of SCCS- were calculated by means of a model developed by Perić and coworkers for the treatment of the Renner–Teller effect in any-ato­mic linear species in its variational form (M. Mitić, R. Ranković, M. Milovanović, S. Jerosimić, M. Perić, Chem. Phys. 464 (2016) 55) using the ab initio multi-refer­ence configuration interaction calculations for obtaining potential energy curves in the Born–Oppenheimer approximation. Additionally, the spin–orbit splitting in the ground state was investigated taking into account the interaction with the first excited state, and the energies obtained from combined treatment of vibronic and spin–orbit interactions in the ground state are reported. Finally, based on the present results, several assignments of unidentified bands reported by Nakajima et al. are proposed.


Keywords


vibronic levels; four-atomic molecules; 2Πu electronic state; MRCI-F12 calculations

References


M. Nakajima, Y. Yoneda, Y. Sumiyoshi, T. Nagata, Y. Endo, J. Chem. Phys. 119 (2003) 7805 (https://doi.org/10.1063/1.1608844)

M. Nakajima, Y. Matsuyama, Y. Sumiyoshi, Y. Endo, Chem. Phys. Lett. 410 (2005) 172 (https://doi.org/10.1016/j.cplett.2005.05.058)

T. Maeyama, T. Oikawa, T. Tsumura, N. Mikami, J. Chem. Phys. 108 (1998) 1368 (https://doi.org/10.1063/1.475510)

M. Perić, Mol. Phys. 105 (2007) 59 (https://doi.org/10.1080/00268970601129076)

M. Mitić, R. Ranković, M. Milovanović, S. Jerosimić, M. Perić, Chem. Phys. 464 (2016) 55 (https://doi.org/10.1016/j.chemphys.2015.11.002)

H. Werner, P. Knowles, J. Chem. Phys. 89 (1988) 5803 (https://doi.org/10.1063/1.455556).

K. R. Shamasundar, G. Knizia, H. J. Werner, J. Chem. Phys. 135 (2011) 054101 (https://doi.org/10.1063/1.3609809)

T. Shiozaki, G. Knizia, H. J. Werner, J. Chem. Phys. 134 (2011) 034113 (https://doi.org/10.1063/1.3528720).

MOLPRO, version 2012.1, a package of ab initio programs (http://www.molpro.net)

H. J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2 (2012) 242 (https://doi.org/10.1002/wcms.82)

H. Werner, P. Knowles, J. Chem. Phys. 82 (1985) 5053 (https://doi.org/10.1063/1.448627)

K. A. Peterson, T. B. Adler, H. J. Werner, J. Chem. Phys. 128 (2008) 084102 (https://doi.org/10.1063/1.2831537)

P. Knowles, C. Hampel, H. Werner, J. Chem. Phys. 99 (1993) 5219 (https://doi.org/10.1063/1.465990)

D. E. Woon, T. H. Dunning, J. Chem. Phys. 98 (1993) 1358 (https://doi.org/10.1063/1.464303)

A. Berning, M. Schweizer, H. Werner, P. J. Knowles, P. Palmieri, Mol. Phys. 98 (2000) 1823 (https://doi.org/10.1080/00268970009483386)

R. Renner, Z. Phys. 92 (1934) 172 (https://doi.org/10.1007/BF01350054)

M. Perić, S. D. Peyerimhoff, R. J. Buenker, Mol. Phys. 55 (1985) 1129 (https://doi.org/10.1080/00268978500101941)

M. Perić, S. D. Peyerimhoff, J. Chem. Phys. 102 (1995) 3685 (https://doi.org/10.1063/1.468599)

M. Perić, S. Jerosimić, R. Ranković, M. Krmar, J. Radić-Perić, Chem. Phys. 330 (2006) 60 (https://doi.org/10.1016/j.chemphys.2006.07.035)

M. Perić, Chem. Phys. 330 (2006) 73 (https://doi.org/10.1016/j.chemphys.2006.07.036)

M. Perić, H. Thümmel, C. M. Marian, S. D. Peyerimhoff, J. Chem. Phys. 102 (1995) 7142 (https://doi.org/10.1063/1.469108)

M. Perić, B. Ostojić, B. Engels, J. Chem. Phys. 105 (1996) 8569 (https://doi.org/10.1063/1.472641)

M. Perić, B. Ostojić, J. Radić-Perić, Phys. Rep. 290 (1997) 283 (https://doi.org/10.1016/S0370-1573(97)00018-5)

M. Perić, B. Ostojić, B. Schäfer, B. Engels, Chem. Phys. 225 (1997) 63 (https://doi.org/10.1016/S0301-0104(97)00225-5)

M. Perić, S. D. Peyerimhoff, J. Mol. Spectrosc. 212 (2002) 142 (https://doi.org/10.1006/jmsp.2002.8533)

M. Perić, S. D. Peyerimhoff, J. Mol. Spectrosc. 212 (2002) 153 (https://doi.org/10.1006/jmsp.2002.8534)

M. Perić, S. D. Peyerimhoff, in The Role of Degenerate States in Chemistry, I. Prigogine, S. A. Rice, M. Baer, G. D. Billing, Eds., Wiley, New York, 2002, p. 583 (https://doi.org/10.1002/0471433462.ch11)

M. Perić, Lj. Stevanović, Int. J. Quantum Chem. 92 (2003) 276 (https://doi.org/10.1002/qua.10484)

M. Perić, S. Jerosimić, M. Mitić, M. Milovanović, R. Ranković, J. Chem. Phys. 142 (2015) 174306 (https://doi.org/10.1063/1.4919285)

M. Mitić, M. Milovanović, R. Ranković, S. Jerosimić, M. Perić, Mol. Phys. 116 (2018) 2671 (https://doi.org/10.1063/1.4919285)

M. Perić, M. Petković, S. Jerosimić, Chem. Phys. 343 (2008) 141 (https://doi.org/10.1016/j.chemphys.2007.07.028)

M. Perić, R. Ranković, S. Jerosimić, Chem. Phys. 344 (2008) 35 (https://doi.org/10.1016/j.chemphys.2007.11.010)

M. Mitić, M. Milovanović, R. Ranković, S. Jerosimić, M. Perić J. Serb. Chem. Soc. 83 (2018) 439 (https://doi.org/10.2298/JSC171129001M)

B. C. Lanczos, J. Res. Natl. Bur. Stand. 45 (1950) 255 (https://archive.org/details/jresv45n4p255)

R. A. L. Cullum, J. K. Willoughby, Algorithms for Large Symmetric Eigenvalue Computations, Vols. I and II, Birkhäuser, Boston, МА, 1984

D. A. Hostutler, S.-G. He, D. J. Clouthier, J. Chem. Phys. 121 (2004) 5801 (https://doi.org/10.1063/1.1786924).




DOI: https://doi.org/10.2298/JSC190401033J

Copyright (c) 2019 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)