Preparation of composite zein/natural resin nanoparticles

Main Article Content

Ljiljana Spasojević
Jaroslav Katona
Sandra Bučko
Lidija Petrović
Jelena Milinković Budinčić
Jadranka Fraj
Altynay Sharipova
Saule Aidarova

Abstract

The aim of this work was to investigate a possibility of preparing composite zein/natural resin (shellac and rosin) nanoparticles by antisolvent co–precipitation from their aqueous ethanol solutions. Influence of zein/resin mass ratio (1/0, 0.8/0.2, 0.5/0.5, 0.4/0.6 and 0/1) and pH (2–12) on particle size, d, and zeta potential, z, of the prepared particles was studied. The func­tional properties of zein/rosin composite nanoparticles were evaluated by studying carvacrol encapsulation. It was shown that the antisolvent precipit­ation can be successfully used to prepare the shellac and rosin nanoparticles, as well as the composite zein/shellac and the zein/rosin nanoparticles. Colloidal properties, d and z, of the obtained nanoparticles are influenced by the zein/
/resin mass ratio and the pH of nanoparticles dispersions. The isoelectric point of composite nanoparticles can be modulated by varying the zein/resin mass ratio. It was found that the zein/rosin nanoparticles are suitable for carvacrol encapsulation, where carvacrol release is enhanced by increasing the rosin share in the composite zein/rosin nanoparticles.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
L. Spasojević, “Preparation of composite zein/natural resin nanoparticles”, J. Serb. Chem. Soc., vol. 85, no. 3, pp. 369–380, Mar. 2020.
Section
Materials

References

E. Filippidi, A. R. Patel, E. C. M. Bouwens, P. Voudouris, K. P. Velikov, Adv. Funct. Mater. 24 (2014) 5962 (https://doi.org/10.1002/adfm.201400359)

S. Talebian, J. Foroughi, S. J. Wade, K. L. Vine, A. Dolatshahi-Pirouz, M. Mehrali, J. Conde, G. G. Wallace, Adv. Mater. 30 (2018) 1 (https://doi.org/10.1002/adma.201706665)

R. Raliya, V. Saharan, C. Dimkpa, P. Biswas, J. Agric. Food Chem. 66 (2018) 6487 (https://doi.org/10.1021/acs.jafc.7b02178)

J. W. Lawton, Cereal Chem. 79 (2002) 1 (https://doi.org/10.1094/CCHEM.2002.79.1.1)

H. Turasan, J. L. Kokini, Biomacromolecules 18 (2017) 331 (https://doi.org/10.1021/acs.biomac.6b01455)

Y. Li, J. Li, Q. Xia, B. Zhang, Q. Wang, Q. Huang, J. Phys. Chem., B 116 (2012) 12057 (https://doi.org/10.1021/jp305709y)

T. Zou, Z. Li, S. S. Percival, S. Bonard, L. Gu, Food Hydrocoll. 27 (2012) 293 (https://doi.org/10.1016/j.foodhyd.2011.10.002)

Q. Zhong, M. Jin, Food Hydrocoll. 23 (2009) 2380 (https://doi.org/10.1016/j.foodhyd.2009.06.015)

Y. Wu, Y. Luo, Q. Wang, LWT – Food Sci. Technol. 48 (2012) 283 (https://doi.org/10.1016/j.lwt.2012.03.027)

C. J. Cheng, M. Ferruzzi, O. G. Jones, Food Hydrocoll. 87 (2019) 229 (https://doi.org/10.1016/j.foodhyd.2018.08.013)

J. W. J. de Folter, M. W. M. van Ruijven, K. P. Velikov, Soft Matter 8 (2012) 6807 (http://dx.doi.org/10.1039/C2SM07417F)

F. Y. de Boer, R. N. U. Kok, A. Imhof, K. P. Velikov, Soft Matter 14 (2018) 2870 (http://dx.doi.org/10.1039/C7SM02415K)

J. Li, X. Xu, Z. Chen, T. Wang, Z. Lu, W. Hu, L. Wang, Carbohydr. Polym. 200 (2018) 416 (https://doi.org/10.1016/j.carbpol.2018.08.025)

J. Xue, Y. Zhang, G. Huang, J. Liu, M. Slavin, L. (Lucy) Yu, Food Hydrocoll. 83 (2018) 25 (https://doi.org/10.1016/j.foodhyd.2018.04.037)

L. Dai, X. Zhan, Y. Wei, C. Sun, L. Mao, D. J. McClements, Y. Gao, Food Hydrocoll. 85 (2018) 281 (https://doi.org/10.1016/j.foodhyd.2018.07.013)

Y. Luo, Z. Teng, Q. Wang, J. Agric. Food Chem. 60 (2012) 836 (https://doi.org/10.1021/jf204194z)

X. Wang, X. Chu, Colloids Surfaces, A 558 (2018) 110 (https://doi.org/10.1016/j.colsurfa.2018.08.064)

Y. Farag, C. S. Leopold, Eur. J. Pharm. Sci. 42 (2011) 400 (https://doi.org/10.1016/j.ejps.2011.01.006)

L. McKeon, F. Regan, B. Burns, R. Leonard, J. Sep. Sci. 37 (2014) 2791 (https://doi.org/10.1002/jssc.201400014)

A. R. Patel, E. C. M. Bouwens, K. P. Velikov, J. Agric. Food Chem. 58 (2010) 12497 (https://doi.org/10.1021/jf102959b)

L. Wang, Y. Ishida, H. Ohtani, S. Tsuge, T. Nakayama, Anal. Chem. 71 (1999) 1316 (https://doi.org/10.1021/ac981049e)

Y. V. Pathak, A. K. Dorle, J. Control. Release 5 (1987) 63 (https://doi.org/10.1016/0168-3659(87)90038-1)

R. Shukla, M. Cheryan, Ind. Crops Prod. 13 (2001) 171 (https://doi.org/10.1002/adfm.201400359)

H. Chen, Q. Zhong, Food Hydrocoll. 43 (2015) 593 (https://doi.org/10.1016/j.foodhyd.2014.07.018)

F. Dong, X. Dong, L. Zhou, H. Xiao, P. Ho, Colloids Surfaces, B 140 (2016) 324 (https://doi.org/10.1016/j.colsurfb.2015.12.048)

L. L. Deng, M. Taxipalati, F. Que, H. Zhang, Sci. Rep. 6 (2016) 1 (https://doi.org/10.1038/srep38160).

Most read articles by the same author(s)