In silico studies on smoothened human receptor and its antagonists in search of anticancer effects

Ana Borota, Sorin Avram, Ramona Curpan, Alina Bora, Daniela Varga, Liliana Halip, Luminita Crisan

Abstract


Lately, the cancers related with abnormal hedgehog (Hh) pathway signalling are targeted by the great development of Smoothened (SMO) receptor inhibitors. Still, the problems of known inhibitors, such as, severe side effects, weak potency against solid tumors or even the acquired resistance need to be overcame by developing new suitable inhibitors. To explore the structural requirements of antagonists needed for SMO receptor inhibition, pharmacophore mapping, 3D-QSAR models, database screening and docking studies were performed. The best selected pharmacophore hypothesis based on which statistically significant atom-based 3D-QSAR model was developed (R2=0.856, Q2=0.611 and Pearson-R=0.817), was further subjected to dataset screening in order to evaluate its ability to prioritize active compounds over decoys. The efficiency of one four-points pharmacophore hypothesis (AAHR.524) was observed based on good evaluation metrics, such as, the area under the curve (0.795), and weighted average precision (0.835), suggesting that the model is trustworthy in predicting novel inhibitors against SMO receptor.


Keywords


pharmacophore; 3D-QSAR; docking; SMO inhibitors

Full Text:

PDF (1,716 kB)

References


M. Ruat, L. Hoch, Smoothened Inhibitors in Cancer. In: Ruat M, ed. The Smoothened Receptor in Cancer and Regenerative Medicine, Springer, 2015, p. 1-11 (ISBN 978-3-319-19755-5)

G. Liapakis, A. Cordomí, L. Pardo, Curr. Pharm. Des. 18 (2012) 175 (http://dx.doi.org/10.2174/138161212799040529)

D. Hilger, M. Masureel, B. K. Kobilka, Nat. Struct. Mol. Biol. 25 (2018) 4 (http://dx.doi.org/10.1038/s41594-017-0011-7)

J. Shonberg, R. C. Kling, P. Gmeiner, S. Löber, Bioorg. Med. Chem. 23 (2015) 3880 (http://dx.doi.org/10.1016/j.bmc.2014.12.034)

L. Halip, A. Borota, M. Mracec, R. Curpan, A. Gruia, M. Mracec, Rev. Roum. Chim. 54 (2009) 157 (http://revroum.lew.ro/wp-content/uploads/2009/RRCh_2_2009/Art%2007.pdf)

K. K. Chahal, M. Parle, R. Abagyn, Anti-cancer Drugs 29 (2018) 387 (http://dx.doi.org/10.1097/CAD.0000000000000609)

L. L. Rubin, F. J. de Sauvage, Nat. Rev. Drug Discov. 5 (2006) 1026 (http://dx.doi.org/10.1038/nrd2086)

C. Wicking, I. Smyth, A. Bale, Oncogene 18 (1999) 7844 (http://dx.doi.org/10.1038/sj.onc.1203282)

S. J. Scales, F. J. de Sauvage, Trends Pharmacol. Sci. 30 (2009) 303 (http://dx.doi.org/10.1016/j.tips.2009.03.007)

D. N. Watkins, D. M. Berman, S. G. Burkholder, B. Wang, P. A. Beachy, S. B. Baylin, Nature 422 (2003) 313 (http://dx.doi.org/10.1038/nature01493)

S. P. Thayer, M. P. di Magliano, P. W. Heiser, C. M. Nielsen, D. J. Roberts, G. Y. Lauwers, Y. P. Qi, S. Gysin, C. Fernández-del Castillo, V. Yajnik, B. Antoniu, M. McMahon, A. L. Warshaw, M. Hebrok, Nature 425 (2003) 851 (http://dx.doi.org/10.1038/nature02009)

D. Qualtrough, A. Buda, W. Gaffield, A. C. Williams, C. Paraskeva, Int. J. Cancer 110 (2004) 831 (http://dx.doi.org/10.1002/ijc.20227)

S. Mukherjee, N. Frolova, A. Sadlonova, Z. Novak, A. Steg, G. P. Page, D. R. Welch, S. M. Lobo-Ruppert, J. M. Ruppert, M. R. Johnson, A. R. Frost, Cancer Biol. Ther. 5 (2006) 674 (https://doi.org/10.4161/cbt.5.6.2906)

D. M. Berman, S. S. Karhadkar, A. Maitra, R. Montes de Oca, M. R. Gerstenblith, K. Briggs, A. R. Parker, Y. Shimada, J. R. Eshleman, D. N. Watkins, P. A. Beachy, Nature 425 (2003) 846 (http://dx.doi.org/10.1038/nature01972)

S. S. Karhadkar, G. S. Bova, N. Abdallah, S. Dhara, D. Gardner, A. Maitra, J. T. Isaacs, D. M. Berman, P. A. Beachy, Nature 431 (2004) 707 (http://dx.doi.org/10.1038/nature02962)

P. Lin, Y. He, G. Chen, H. Ma, J. Zheng, Z. Zhang, B. Cao, H. Zhang, X. Zhang, X. Mao, Anti-cancer Drugs 29 (2018) 995 (http://dx.doi.org/10.1097/CAD.0000000000000679)

J. Jiang, C. C. Hui, Dev. Cell. 15 (2008) 801 (http://dx.doi.org/10.1016/j.devcel.2008.11.010)

T. K. Rimkus, R. L. Carpenter, S. Qasem, M. Chan, H. W. Lo, Cancers 8 (2016) 22 (http://dx.doi.org/10.3390/cancers8020022 )

S. V. Mohan, A. L. Chang, Clin. Cancer Res. 21 (2015) 2677 (http://dx.doi.org/10.1158/1078-0432.CCR-14-3180)

M. Xin, X. Ji, L. K. de la Cruz, S. Thareja, B. Wang, Med. Res. Rev. 38 (2018) 870 (http://dx.doi.org/10.1002/med.21482)

W. Lu, D. Geng, Z. Sun, Z. Yang, H. Ma, J. Zheng, X. Zhang, Bioorg. Med. Chem. Lett. 24 (2014) 2300 (https://doi.org/10.1016/j.bmcl.2014.03.079)

S. L. Dixon, A. M. Smondyrev, E. H. Knoll, S. N. Rao, D. E. Shaw, R. A. Friesner, J. Comput. Aided Mol. Design 20 (2006) 647 (http://dx.doi.org/10.1007/s10822-006-9087-6)

R. A. Friesner, J. L. Banks, R. B. Murphy, T. A. Halgren, J. J. Klicic, D. T. Mainz, M. P. Repasky, E. H. Knoll, D. E. Shaw, M. Shelley, J. K. Perry, P. Francis, P. S. Shenkin, J. Med. Chem. 47 (2004) 1739 (https://doi.org/10.1021/jm0306430)

W. Sherman, T. Day, M. P. Jacobson, R. A. Friesner, R. Farid, J. Med. Chem. 49 (2006) 534 (https://doi.org/10.1021/jm050540c)

A. Golbraikh, A. Tropsha, J. Mol. Graph. Model. 20 (2002) 269 (https://doi.org/10.1016/S1093-3263(01)00123-1)

A. Golbraikh, A. Tropsha, J. Comput. Aided Mol. Des. 16 (2002) 357 (https://doi.org/10.1023/A:1020869118689)

S. I. Avram, L. M. Pacureanu, A. Bora, L. Crisan, S. Avram, L. Kurunczi, J. Chem. Inform. Model. 54 (2014) 2360 (http://dx.doi.org/10.1021/ci5002668)

J. A. Hanley, B. J. McNeil, Radiology 143 (1982) 29 (http://dx.doi.org/10.1148/radiology.143.1.7063747)

J. F. Truchon, C. I. J. Bayly, J. Chem. Inform. Model. 47 (2007) 488 (http://dx.doi.org/10.1021/ci600426e)

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I. H. Witten, SIGKDD Explor. Newsletter 11 (2009) 10 (http://dx.doi.org/10.1145/1656274.1656278)

T. Fawcett, Pattern Recognit. Lett. 27 (2006) 861 (http://dx.doi.org/10.1016/j.patrec.2005.10.010)

A. N. Jain, J. Comput. Aided Mol. Des. 22 (2008) 201 (http://dx.doi.org/10.1007/s10822-007-9151-x)

E. Kotsampasakou, G. F. Ecker, J. Chem. Inform. Model. 57 (2017) 608 (http://dx.doi.org/10.1021/acs.jcim.6b00518)

B. Badhani, R. Kakkar, J. Biomol. Struct. Dyn. 35 (2017)1950 (http://dx.doi.org/10.1080/07391102.2016.1202863)

H. Gohlke, M. Hendlich, G. Klebe, J. Mol. Biol. 295 (2000) 337 (http://dx.doi.org/10.1006/jmbi.1999.3371)

C. Wang, H. Wu, T. Evron, E. Vardy, G. W. Han, X. P. Huang, S. J. Hufeisen, T. J. Mangano, D. J. Urban, V. Katritch, V. Cherezov, M. G. Caron, B. L. Roth, R. C. Stevens, Nat. Commun. 10 (2014) 4355 (http://dx.doi.org/10.1038/ncomms5355)

C. Wang, H. Wu, V. Katritch, G. W. Han, X. P. Huang, W. Liu, F. Y. Siu, B. L. Roth, V. Cherezov, R. C. Stevens, Nature 497 (2013) 338 http://dx.doi.org/10.1038/nature12167)

E. F. X. Byrne, R. Sircar, P. S. Miller, G. Hedger, G. Luchetti, S. Nachtergaele, M. D. Tully, L. Mydock-McGrane, D. F. Covey, R. P. Rambo, M. S. P. Sansom, S. Newstead, R. Rohatgi, C. Siebold, Nature 535 (2016) 517 (http://dx.doi.org/10.1038/nature18934)




DOI: https://doi.org/10.2298/JSC190403085B

Copyright (c) 2019 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)