Complex effect of Robinia pseudoacacia L. and Ailanthus altissima (Mill.) Swingle growing on asbestos deposits: allelopathy and biogeochemistry

Filip Jakov Grbović, Gordana M. Gajić, Snežana R. Branković, Zoran B. Simić, Nenad L. Vuković, Pavle Ž. Pavlović, Marina D. Topuzović

Abstract


Asbestos is widely mined and used around the globe posing a great risk to environment and human health. The main objective of this study was to determine allelopathic potential of Robinia pseudoacacia L. and Ailanthus altissima (Mill.) Swingle growing on the asbestos deposits at abandoned mine “Stragari” in central Serbia. The pH, content of carbon, nitrogen, calcium carbonate, available phosphorous and potassium, content of Fe, Ni, Cu, Zn, Pb, Mn, and phenolics were analyzed in control asbestos (zones without vegetation cover) and plant rhizospheric asbestos. Allelopathic activity of plant species was assessed by “rhizosphere soil method”, and Trifolium pratense L. and Medicago sativa L. were used as the indicator species. A. altissima showed higher allelopathic potential compared to R. pseudoacacia for T. pratense and M. sativa due to greater content of phenolics. Alleopathic activity of phenolics in rhizospheric asbestos was highly correlated with pH, content of carbon and nitrogen, available phosphate and potassium, and content of Ni, Cu, Zn, Pb and Mn. A. altissima increased phenolics content in rhizospheric asbestos inhibiting the plant growth. This woody plant in spite of high allelopathic potential is suitable for revegetation of distrurbed ecosystems because it initiates pedogenesis and affects the asbestos chemistry.


Keywords


woody species; allelochemicals; degraded habitats; phenolic acids; flavonoids; radicle growth inhibition

Full Text:

PDF (1,776 kB)

References


F. Dellisanti, P. L. Rossi, G. Valdrè, Int. J. Miner. Process. 91 (2009) 61 (https://doi.org/10.1016/j.minpro.2008.12.001)

M. R. Sim, Occup. Environ. Med. 70 (2013) 1 (https://doi.org/10.1136/oemed-2012-101290)

M. B. Kadiiska, A. J. Ghio, R. P. Mason, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., 60 (2004) 1371 (https://doi.org/10.1016/j.saa.2003.10.035)

D. M. Bernstein, J. A. Hoskins, Regul. Toxicol. Pharmacol. 45 (2006) 252 (https://doi.org/10.1016/j.yrtph.2006.04.008)

J. LaDou, B. Castleman, A. Frank, M. Gochfeld, M. Greenberg, J. Huff, T. K. Joshi, P. J. Landrigan, R. Lemen, J. Myers, M. Soffritti, C. L. Soskolne, K. Takahashi, D. Teitelbaum, B. Terracini, A. Watterson, Environ. Health Perspect. 118 (2010) 897 (https://doi.org/10.1289/ehp.1002285)

C. Ramazzini, M. Soffritti, Am. J. Ind. Med. 54 (2011) 168 (https://doi.org/10.1002/ajim.20892)

F. Turci, S. E. Favero-Longo, C. Gazzano, M. Tomatis, L. Gentile, M. Bergamini, J. Hazard. Mater. 308 (2016) 321 (https://doi.org/10.1016/j.jhazmat.2016.01.056)

E. Koumantakis, K. Anastasiadou, D. Kalderis, E. Gidarakos, J. Hazard. Mater. 167 (2009) 1080 (https://doi.org/10.1016/j.jhazmat.2009.01.102)

G. Gajić, L. Djurdjević, O. Kostić, S. Jarić, M. Mitrović, P. Pavlović, Front. Environ. Sci. 6 (2018) 124 (https://doi.org/10.3389/fenvs.2018.00124)

O. Kostic, M. Mitrović, M. Knežević, S. Jarić, G. Gajić, L. Djurdjević, P. Pavlović, Arch. Biol. Sci. 64 (2012) 145 (https://doi.org/10.2298/ABS1201145K)

L. Djurdjević, M. Mitrović, P. Pavlović, G. Gajić, O. Kostić, Arch. Environ. Contam. Toxicol. 50 (2006) 488 (https://doi.org/10.1007/s00244-005-0071-2)

L. Djurdjević, M. Mitrović, G. Gajić, S. Jarić, O. Kostić, L. Oberan, P. Pavlović, Flora Morphol. Distrib. Funct. Ecol. Plants 206 (2011) 921 (https://doi.org/10.1016/j.flora.2011.06.001)

E.L. Rice, Allelopathy. 2nd ed., Academic Press, New York, USA, 1984 (ISBN 0125870558)

Inderjit, Bot. Rev. 62 (1996) 186 (https://doi.org/10.1007/BF02857921)

M. Mitrović, S. Jarić, L. Đurđević, B. Karadžić, G. Gajić, O. Kostić, L. Oberan, D. Pavlović, M. Pavlović, P. Pavlović, Allelopath. J. 29 (2012) 177 (http://www.allelopathyjournal.org/archives/?Year = 2012&Vol = 29&Issue = 2&Month = 4)

L. Djurdjević, G. Gajić, O. Kostić, S. Jarić, D. Pavlović, M. Mitrović, P. Pavlović, Allelopath. J. 32 (2013) 133 (https://www.researchgate.net/profile/Gordana_Gajic/publication/280305492_Allelopathic_effects_of_Chrysopogon_gryllus_L_in_Chrysopogonetum_Pannonicum_Stjep-Ves_steppe_community_at_Deliblato_Sands_Serbia/links/55b0cf7808ae11d31039de58/Allelopathic-effects-of-Chrysopogon-gryllus-L-in-Chrysopogonetum-Pannonicum-Stjep-Ves-steppe-community-at-Deliblato-Sands-Serbia.pdf)

F. Grbović, G. Gajić, S. Branković, Z. Simić, A. Ćirić, Lj. Rakonjac, P. Pavlović, M. Topuzović, Arch. Biol. Sci. 71 (2019) 83 (https://doi.org/10.2298/ABS180823050G)

M. J. Reigosa, L. González, Forest ecosystems and allelopathy, in Allelopath. A Physiol. Process with Ecol. Implic., Reigosa MJ, Pedrol N, González L, Ed(s)., Kluwer Academic Publishers, Netherlands, 2006, p. 451 (https://doi.org/10.1007/1-4020-4280-9_20)

L. Djurdjević, P. Pavlović, M. Mitrović, The effect of phenolic compounds on soil properties, in Soil Phenols, A. Muscolo, M. Sidari, Ed(s), Nova Science Publisher, New York, USA, 2009, p. 31 (ISBN 9781608762644)

L. Djurdjević, A. Dinić, P. Pavlović, M. Mitrović, B. Karadžić, V. Tešević, Biochem. Syst. Ecol. 32 (2004) 533 (https://doi.org/10.1016/j.bse.2003.10.001)

D. A. Wardle, M. C. Nilsson, C. Gallet, O. Zackrisson, Biol. Rev. 73 (1998) 305 (https://doi.org/10.1111/j.1469-185X.1998.tb00033.x)

Inderjit, J. Weiner, Perspect. Plant Ecol. Evol. Syst. 4 (2001) 3 (https://doi.org/10.1078/1433-8319-00011)

P. Lazarević, V. Stojanović, I. Jelić, R. Perić, B. Krsteski, R. Ajtić, V. Bjedov, Zaštita prirode 62 (2012) 5 (in Serbian) (ISSN 0514-5899) (https://scindeks.ceon.rs/article.aspx?artid = 0514-58991201005L)

A. Cierjacks, I. Kowarik, J. Joshi, S. Hempel, M. Ristow, M. von der Lippe, E. Weber, J. Ecol.101 (2013) 1623 (https://doi.org/10.1111/1365-2745.12162)

I. Kowarik, I. Säumel, Perspect. Plant Ecol. Evol. Syst. 8 (2007) 207 (https://doi.org/10.1016/j.ppees.2007.03.002)

H. Nasir, Z. Iqbal, S. Hiradate, Y. Fujii, J. Chem. Ecol. 31 (2005) 2179 (https://doi.org/10.1007/s10886-005-6084-5)

D. Bartha, Á. Csiszár, V. Zsigmond, Black locust (Robinia pseudoacacia) in The most important invasive plants in Hungary, Z. Bolta-Dukan, L. Balogh, Ed(s), Institute of Ecology and Botany, Hungarian Academy of Sciences, Vácrátót, Hungary, 2008, p. 63 (ISBN 978-963-8391-42-1)

Á. Csiszár, Acta Silv. Lignaria Hungarica 5 (2009) 9 (ISSN 1786-064x)

B. Tatić, V. Veljović, A. Marković, B. Petković, Biosistematika, 7 (1981) 123 (in Serbian)

S. R. Branković, R. M. Glišić, V. R. Đekić, М. Marin, Hem. Ind. 69 (2015) 313 (https://doi.org/10.2298/HEMIND131017045B)

I.V. Tyurin, Agrochemical methods of soil analysis, Nauka, Moskva SSSR, 1965 (in Russian)

J. Benton Jones Jr, Laboratory Guide for Conducting Soil Tests and Plant Analysis, CRC Press, Boca Raton, Florida, USA, 2010 (https://doi.org/10.1201/9781420025293)

R. A. Džamić, D. Stevanović, M. Jakovljević, Praktikum iz agrohemije, Poljoprivredni fakultet, Beograd, 1996 (in Serbian)

H. Egner, H. Riehm, W. R. Domingo, Kgl. Lantbruks-Hogskol. Ann 26 (1960) 199

USEPA, Method 3051A: Microwave assisted digestion of sediments, sludges, soils and oils. Test methods, 2007 (http://www.epa.gov/epawaste/hazard/testmethods/sw846/pdfs/3051a.pdf).

M. Žemberyová, J. Barteková, I. Hagarová, Talanta 70 (2006) 973 (https://doi.org/10.1016/j.talanta.2006.05.057)

P. C. Wootton-Beard, A. Moran, L. Ryan, Food Res. Int. 44 (2011) 217 (https://doi.org/10.1016/j.foodres.2010.10.033)

C. Quettier-Deleu, B. Gressier, J. Vasseur, T. Dine, C. Brunet, M. Luyckx, M. Cazin, J. C. Cazin, F. Bailleul, F. Trotin, J. Ethnopharmacol. 72 (2000) 35 (https://doi.org/10.1016/S0378-8741(00)00196-3)

Y. Fujii, A. Furubayashi, S. Hiradate, Rhizosphere soil method: a new bioassay to evaluate allelopathy in the field, In Proceedings of the 4th World Congress on Allelopathy: Establishing the Scientific Base, (2005), Wagga, New South Wales, Australia, Centre for Rural Social Research, Charles Sturt University, Wagga, New South Wales, Australia, (2005), p. 490 (http://www.regional.org.au/au/allelopathy/2005/2/3/2535_fujiiy.htm)

R. D. Revees, The hyperaccumulation of nickel by serpentine plants, in The vegetation of ultramafic (serpentine) soils, A.J.M Baker, J. Proctor, R.D. Reeves Ed(s)., Intercept Ltd., Andover, Hampshire, UK, 1992, p. 253 (ISBN 0946707626 9780946707621)

A. Kabata-Pendias, Trace elements in soils and plants: Fourth edition, CRC Press, Boca Raton, Florida, USA, 2010 (https://doi.org/10.1201/b10158)

N. Pedrol, L. González, M. J. Reigosa, Allelopathy and abiotic stress, in Allelopath. A Physiol. Process with Ecol. Implic., Reigosa MJ, Pedrol N, González L, Ed(s)., Kluwer Academic Publishers, Netherlands, 2006, p. 171 (https://doi.org/10.1007/1-4020-4280-9_9)

K. Ekschmitt, E. Kandeler, C. Poll, A. Brune, F. Buscot, M. Friedrich, G. Gleixner, A. Hartmann, M. Kästner, S. Marhan, A. Miltner, S. Scheu, V. Wolters, J. Plant Nutr. Soil Sci. 170 (2008) 27 (https://doi.org/10.1002/jpln.200700051)

U. Kafkafi, B. Bar-Yosef, R. Rosenberg, G. Sposito, Soil Sci. Soc. Am. J. 52 (2010) 1585 (https://doi.org/10.2136/sssaj1988.03615995005200060012x)

K. A. Vogt, Z. Yu, R. A. Dahlgren, Nature 377 (1995) 227 (https://doi.org/10.1038/377227a0)

J. H. J. R. Makoi, P. A. Ndakidemi, New Zeal. J. Crop Hortic. Sci. 40 (2012) 161 (https://doi.org/10.1080/01140671.2011.630737)

J. L. Pollock, R. M. Callaway, G. C. Thelen, W. E. Holben, J. Ecol. 97 (2009) 1234 (https://doi.org/10.1111/j.1365-2745.2009.01553.x)

L. Li, S.-M. Li, J.-H. Sun, L.-L. Zhou, X.-G. Bao, H.-G. Zhang, F.-S. Zhang, Proc. Natl. Acad. Sci. 104 (2007) 11192 (https://doi.org/10.1073/pnas.0704591104)

L. Gómez-Aparicio, C. D. Canham, J. Ecol. 96 (2008) 447 (https://doi.org/10.1111/j.1365-2745.2007.01352.x)




DOI: https://doi.org/10.2298/JSC190416062

Copyright (c) 2019 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)