Mixed adsorption of hexadecylpyridinium bromide and Triton X surfactants at graphitized carbon black

Olga Kochkodan, Victor Maksin

Abstract


Adsorption of cationic 1-hexadecylpyridinium bromide (HDPB) and non-ionic  p-(1,1,3,3-tetramethylbutyl)-phenoxypolyoxyethylene glycols surfactants of the Triton X series (Triton X-45, Triton X-100 and Triton X-305) from their single and mixed aqueous solutions at thermally graphitized carbon black (CB) was studied. It was shown that adsorption of the non-ionic surfactant from its individual solution decreased when a number of ethylene oxide units in the surfactant molecule increased. Addition of the non-ionic surfactants increased the amount of HDPB adsorbed from HDPB/Triton X mixtures. At low solution concentrations it was found that in HDPB/Triton X mixtures, the experimental values of total surfactants adsorption are higher than the adsorption values calculated for the ideal surfactant mixtures. The composition of the mixed HDPB/Triton X adsorption layer and the parameters of the intermolecular interaction (βs) between the components in this layer were calculated by using the Rubingh-Rosen approach. It was shown that βs parameters have negative values, which indicate notable interactions between Triton X molecules and HDPB ions in the mixed adsorption layer. It was found that the composition of the mixed adsorption layer at CB surface is notably different from the surfactants composition in the bulk solution. The mixed HDPB/Triton X adsorption layer is enriched with Triton X surfactant and the mole fraction of Triton X increases with decreasing of ethoxylation degree of its molecules.

Keywords


adsorption layer, intermolecular interactions, surfactants, Triton X, graphitized carbon black

Full Text:

PDF (1,340 kB)

References


G. D. Parfitt, C. H. Rochester, Adsorption from Solution at the Solid/Liquid Interface; Academic Press, London, 1983, 416 p.

M. J. Rosen, J. M. Kunjappu, Surfactants and interfacial phenomena, Jon Willey and Songs, Inc., New Jersey, 2012, 616 p.

L. Chen, J. X. Xiao, K. Ruan, J. M. Ma, Langmuir 18 (2002) 7250 (https://doi.org/10.1021/la025878d)

R. Zhang, P. Somasundaran, Adv. Colloid Interface Sci. 123–126 (2006) 213 (https://doi.org10.1016/j.cis.2006.07.004)

R. Atkin, V. S. J. Craig, E. J. Wanless, S. Biggs, Adv. Colloid Interface Sci. 103 (2003) 219 (https://doi.org/10.1016/S0001-8686(03)00002-2)

L. Zhang, R. Zhang, P. Somasundaran, J. Colloid Interface Sci. 302 (2006) 25 (https://dx.doi.org/10.1016/j.jcis.2006.06.068)

K. Thakkar, B. Bharatiya, D. Ray, V. K. Aswal, P. Bahadur, J. Mol. Liquids 241 (2017) 136 (https://dx.doi.org/10.1016/j.molliq.2017.05.138)

D. A. Woods, J. Petkov, C. D. Bain, J. Phys. Chem. B. 115 (2011) 7353 (https://dx.doi.org/10.1021/jp201340j)

D. Manko, A. Zdziennicka, B. Janczuk, Appl. Surface Sci. 392 (2017) 117 (https://dx.doi.org/10.1016/j.apsusc.2016.09.020)

J. B. Donnet, Carbon Black: Science and Technology, CRC Press, New York, 1993, p461

K. Kinoshita, Carbon: Electrochemical and Physicochemical Properties; John Wiley & Sons Inc., New York, 1988, 533 p. (https://doi.org/10.1002/bbpc.198800269)

H. Y. Li, H. Z. Chen, J. Z. Sun, J. Cao, Z. L. Yang, M. Wang. Macromol. Rapid Comm. 24 (2003) 715 (https://dx.doi.org/10.1002/marc.200350017)

H. Ridaoui, A. Jada, L. Vidal, J. B. Donnet, Colloids Surf. A: Physicochem. Eng. Aspects 278 (2006) 149 (https://dx.doi.org/10.1016/j.colsurfa.2005.12.013)

A. M. Gallardo-Moreno, C. M. Gonzales-Garcia, M. L. Gonzalez-Martin, J. M. Bruque, Colloids Surf. A: Physicochem. Eng. Aspects 249 (2004) 57 (https://dx.doi.org/10.1016/j.colsurfa.2004.08.051)

S. W. Musselmann, S. Chander, Colloids Surf. A: Physicochem. Eng. Aspects 206 (2002) 497 (https://dx.doi.org/10.1016/S0927-7757(02)00055-9)

S. D. Gupta, S. S. Bhagwat, J. Dispersion Sci. Technol. 26 (2005) 111 (https://dx.doi.org/10.1081/DIS-200042721)

C. Eisermann, C. Damm, B. Winzer, W. Peukert, Powder Technology 253 (2014) 338 (https://dx.doi.org/10.1016/j.powtec.2013.11.051)

O. D. Kochkodan, N. A. Klimenko, T. V. Karmazina, Colloid J. 58 (1996) 330

C. Ma, Y. Xia, Colloid and Surfaces 66 (1992) 215 (https://dx.doi.org/10.1016/0166-6622(92)80195-8)

L. Bossolelti, R. Ricceri, G. Giabrielli, J. Disper. Sci. Techn. 16 (1995) 205 (https://dx.doi.org/10.1080/01932699508943674)

J. Liu, J. Chen, L. Jiang, X. Yin, J. Ind. Eng. Chem. 20 (2014) 616 (https://doi.org/10.1016/j.jiec.2013.05.024)

J-X. Xiao, Y. Zhang, C. Wang, J. Zhang, C.-M. Wang, Y.-X. Bao, Z.-G. Zhao, Carbon 43 (2005) 1032 (https://doi.org/10.1016/j.carbon.2004.11.039)

A. C. Lau, D. N. Furlong, T. W. Healy, F. Grieser, Colloids and Surfaces, 18 (1986) 93 (https://doi.org/10.1016/0166-6622(86)80196-2)

R. Zhang, P. Somasundaran, Langmuir 21 (2005) 4868 (https://doi.org/10.1021/la050058x)

M. Tsubouchi, H. Mitsushio, N. Yarnasaki, Anal. Chem. 53 (1981) 1957 (https://dx.doi.org/10.1021/ac00235a060)

O. Kochkodan. Thermodynamics of adsorption of surfactants from aqueous solutions by carbon sorbents /in The Potential of Modern Science. Vol.1, Sciemcee Publishing, London, 2019, p.168-198.

R. Marsalek, J. Pospisil, B. Taraba, Colloids Surf. A: Physicochem. Eng. Aspects 383 (2011) 80 (https://doi.org/10.1016/j.colsurfa.2011.01.012)

M. Bele, A. Kodre, B. Arcon, J. Grdadolnik, S. Pejovnik, J. O. Besenhard, Carbon 36 (1998) 1207 (https://dx.doi.org/10.1016/S0008-6223(98)00099-2)

F. Julien, M. Baudu, M. Mazet, Water Res. 32 (1998) 3414 (https://dx.doi.org/10.1016/S0043-1354(98)00109-2)

A. Kitahara, A. Wamanabe, Electrical phenomena at interfaces: Fundamentals, Measurements, and Applications; Marcel Dekker Inc.; New York, 1984, 463 p.

Z. Király, G. H. Findenegg, J. Phys. Chem. B. 102 (1998) 1203 (https://dx.doi.org/10.1021/jp972218m)

A. Gellan, C. H. Rochester, J. Chem. Soc. Faraday Trans. 81 (1985) 1503 (http://dx.doi.org/10.1039/F19858101503)

P. E. Levitz, Comptes Rendus Geosci. 334 (2002) 665 (https://dx.doi.org/10.1016/S1631-0713(02)01806-0)

Q. Zhou, Y. Wu, M. Rozen, Langmuir 19 (2003) 7955 (https://doi.org/10.1021/la030157f)

M. J. Schwuger, H.G. Smolka, Colloid Polymer Sci. 255 (1977) 589

M. Rosen, Y. Wu, Langmuir 17 (2001) 7296 (https://doi.org/10.1021/la010466a)

Q. Zhou, M Rosen, Langmuir 19 (2003) 4555 9 (https://doi.org/10.1021/la020789m)

N. I. Ivanova, A. M. Parfenova, E. A. Amelina, Vestnik Moscow Univ. Chemistry. 48 (2007) 182 [in Russian]

X. Y. Hua, M. J. Rosen, J Colloid Interface Sci, 90 (1982) 212 (https://doi.org/10.1016/0021-9797(82)90414-3)

M. J. Rosen, S. B. Sultana, J Colloid Interface Sci, 238 (2001) 528 (https://doi.org/10.1006/jcis.2001.7537)

Y. Wu, M. Rozen, Langmuir 18 (2002) 2205 (https://doi.org/10.1021/la0113318)

K. S. Sharma, P. A. Hassan, A. K. Rakshit, Colloids Surfaces A: Physicochem. Eng. Aspects 289 (2006) 17 (https://doi.org/10.1016/j.colsurfa.2006.04.004)




DOI: https://doi.org/10.2298/JSC190416112K

Copyright (c) 2019 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)