Effects of alkali metal cations on oxygen reduction on N-containing carbons viewed as the interplay between capacitive and electrocatalytic properties: Experiment and theory
Main Article Content
Abstract
The development of new electrocatalysts for the oxygen reduction reaction (ORR) is crucial for the sustainable energy economy. Both fundamental understanding of surface processes under operating conditions and suitable ORR activity measurements are necessary to select the best electrocatalyst candidate. In the present study, to contribute to this matter, we show that both the nature of alkali metal cations (Li+, Na+ and K+), composing supporting aqueous hydroxide solution, as well as the potential sweep rate in rotating disk electrode voltammetry measurements, influence the results of measurements of ORR activities of N-containing nanocarbons. Based on density functional theory calculations, we concluded that the specific interactions of hydrated cations with oxygen functional groups are responsible for such behaviour, leading to a close interplay between the electrode double layer charging and the parallel Faradaic process on carbon surface. From a practical point of view, the presented results indicate that it is necessary to standardize carefully the ORR measurements on different carbon materials.
Downloads
Metrics
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
M. Winter, R. J. Brodd, Chem. Rev. 104 (2004) 4245 (https://doi.org/10.1021/cr020730k)
N. M. Markovic, P. N. Ross, Surf. Sci. Rep. 45 (2002) 117 (https://doi.org/10.1016/S0167-5729(01)00022-X)
K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Science 323 (2009) 760 (https://doi.org/10.1126/science.1168049)
I. A. Pašti, A. J. Ležaić, N. M. Gavrilov, G. Ćirić-Marjanović, S. V. Mentus, Synth. Met. 246 (2018) 267 (https://doi.org/10.1016/j.synthmet.2018.11.003)
I. A Pašti, N. M. Gavrilov, A. S. Dobrota, M. Momčilović, M. Stojmenović, A. Topalov, D. M. Stanković, B. Babić, G. Ćirić-Marjanović, S. V. Mentus, Electrocatal. 6 (2015) 498 (https://doi.org/10.1007/s12678-015-0271-0)
G. Chen, M. Li, K. A. Kuttiyiel, K. Sasaki, F. Kong, C. Du, Y. Gao, G. Yin, R. R. Adzic, Electrocatal. 7 (2016) 305 (https://doi.org/10.1007/s12678-016-0309-y)
V. R. Stamenkovic, B. Fowler, B. S. Mun, G. Wang, P. N. Ross, C. A. Lucas, N. M. Marković, Science 315 (2007) 493 (http://doi.org/10.1126/science.1135941)
I. A. Pasti, N. M. Gavrilov, S. V. Mentus, Int. J. Electrochem. Sci. 7 (2012) 11076 (http://www.electrochemsci.org/papers/vol7/71111076.pdf)
N. Hodnik, C. Baldizzone, S. Cherevko, A. Zeradjanin, K. J. J. Mayrhofer, Electrocatal. 6 (2015) 237 (https://doi.org/10.1007/s12678-015-0255-0)
S Mentus, I Pasti, IPSI BgD Trans. Adv. Res. 16 (2013) (http://ipsitransactions.org/journals/papers/tar/2013jan/p4.pdf)
S. S. Kocha, K. Shinozaki, J. W. Zack, D. J. Myers, N. N. Kariuki, T. Nowicki, V. Stamenkovic, Y. Kang, D. Li, D. Papageorgopoulos, Electrocatal. 8 (2017) 366 (https://doi.org/10.1007/s12678-017-0378-6)
A. N. Frumkin, Z. Phys. Chem. A164 (1933) 121
D. Strmcnik, K. Kodama, D. van der Vliet, J. Greeley, V. R. Stamenkovic, N. M. Marković, Nature Chem. 1 (2009) 466 (https://doi.org/10.1038/nchem.330)
B. Garlyyev, S. Xue, M. D. Pohl, D. Reinisch, A. S. Bandarenka, ACS Omega 3 (2018) 15325 (https://doi.org/10.1021/acsomega.8b00298)
S. Xue, B. Garlyyev, S. Watzele, Y. Liang, J. Fichtner, M. D. Pohl, A. S. Bandarenka, ChemElectroChem 5 (2018) 2326 (https://doi.org/10.1002/celc.201800690)
D. Karačić, S. Korać, A. S. Dobrota, I. A. Pašti, N. V. Skorodumova, S. J. Gutić, Electrochim. Acta 297 (2019) 112 (https://doi.org/10.1016/j.electacta.2018.11.173)
N. Gavrilov, I. A. Pašti, M. Mitrić, J. Travas-Sejdić, G. Ćirić-Marjanović, S. V. Mentus, J. Power Sources 220 (2012) 306 (https://doi.org/10.1016/j.jpowsour.2012.07.119)
N. Gavrilov, I. A. Pašti, M. Vujković, J. Travas-Sejdic, G. Ćirić-Marjanović, S. V. Mentus, Carbon 50 (2012) 3915 (https://doi.org/10.1016/j.carbon.2012.04.045)
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865 (https://doi.org/10.1103/PhysRevLett.77.3865)
P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A.D. Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, J. Phys.: Condens. Matter 21 (39) (2009) 395502 (http://dx.doi.org/10.1088/0953-8984/21/39/395502)
A.S. Dobrota, I.A. Pašti, S. V. Mentus, N. V. Skorodumova, Phys. Chem. Chem. Phys. 19 (2017) 8530 (https://doi.org/10.1039/c7cp00344g)
N. P. Diklić, A. S. Dobrota, I. A. Pašti, S. V. Mentus, B. Johansson, N. V. Skorodumova, Electrochim. Acta 297 (2019) 523 (https://doi.org/10.1016/j.electacta.2018.11.108)
H.J. Monkhorst, J.D. Pack, Phys. Rew., B 13 (1976) 5188 (https://doi.org/10.1103/PhysRevB.13.5188)
S. Grimme, J. Comput. Chem. 27 (2006) 1787 (https://doi.org/10.1002/jcc.20495)
A.S. Dobrota, S. Gutić, A. Kalijadis, M. Baljozović, S. V. Mentus, N. V. Skorodumova, I.A. Pašti, RSC Adv. 6 (2016) 57910 (http://dx.doi.org/10.1039/C6RA13509A)
A.J. Bard, L.R. Faulkner, Electrochemical Methods Fundamentals and Applications, 2nd ed., John Wiley & Sons, Inc., New York, 2001.
D. W. H. Rankin, CRC handbook of chemistry and physics, 89th ed., David R. Lide, Ed., Taylor & Francis, Abingdon-on-Thames, 2008.
R. E. Davis, G. L. Horvath, C. W. Tobias, Electrochim. Acta 12 (1967) 287 (https://doi.org/10.1016/0013-4686(67)80007-0)
G. Ćirić-Marjanović, I. Pašti, S. Mentus, Progress Mater. Sci. 69 (2015) 61 (https://doi.org/10.1016/j.pmatsci.2014.08.002)
D. Hulicova, M. Kodama, H. Hatori, Chem. Mater. 18 (2006) 2318 (https://doi.org/10.1021/cm060146i).