Six-dimensional potential energy surface and rotation-vibration energy levels of HNCO in the ground electronic state

Mirjana Mladenović

Abstract


A six-dimensional potential energy surface based on CCSD(T)/cc-pCVQZ ab initio energy points is developed for HNCO in the 1A¢ ground electronic state and used to calculate rotation-vibration energy levels for J £ 5. The barrier to linearity is computed to be 1834 cm−1 for the angle HNC and 336 cm-1 for the angle NCO. The fundamental transitions are obtained for the main form and four isotopic variants of HNCO. The n3 /2n6 state mixing is identified with the help of the adiabatic projection scheme.


Keywords


quasilinear molecules; isotopic variants of HNCO

Full Text:

PDF (1,643 kB)

References


B. P. Winnewisser, The Spectra, Structure, and Dynamics of Quasi-Linear Molecules with Four and More Atoms, in: K. Narahari Rao (Ed.), Molecular Spectroscopy: Modern Research, vol. 3, Academic Press, Orlando, 1985, p 321 (https://doi.org/10.1016/B978-0-12-580643-5.50011-7).

G. Herzberg, C. Reid, Discuss. Faraday Soc. 9 (1950) 92 (https://doi.org/10.1039/DF9500900092).

R. A. Ashby, R. L. Werner, Spectrochim. Acta 22 (1966) 1345 (https://doi.org/10.1016/0371-1951(66)80038-3).

B. Krakow, R. C. Lord, G. O. Neely, J. Mol. Spectrosc. 27 (1968) 148 (https://doi.org/10.1016/0022-2852(68)90027-1).

K. M. T. Yamada, J. Mol. Spectrosc. 68 (1977) 423 (https://doi.org/10.1016/0022-2852(77)90246-6).

D. A. Steiner, K. A. Wishah, S. R. Polo, T. K. McCubbin, Jr., J. Mol. Spectrosc. 76 (1979) 341 (https://doi.org/10.1016/0022-2852(79)90233-9).

K. M. T. Yamada, J. Mol. Spectrosc. 79 (1980) 323 (https://doi.org/10.1016/0022-2852(80)90217-9 ).

D. A. Steiner, S. R. Polo, T. K. McCubbin, K. A. Wishah, Can. J. Phys. 59 (1981) 1313 (https://doi.org/10.1139/p81-172).

B. Lemoine, K. Yamada, G. Winnewisser, Ber. Bunsenges. Phys. Chem. 86 (1982) 795 (https://doi.org/10.1002/bbpc.19820860906).

D. A. Steiner, S. R. Polo, T. K. McCubbin, Jr., K. A. Wishah, J. Mol. Spectrosc. 98 (1983) 453 (https://doi.org/10.1016/0022-2852(83)90254-0).

L. Fusina, M. Carlotti, B. Carli, Can. J. Phys. 62 (1984) 1452 (https://doi.org/10.1139/p84-192).

K. M. T. Yamada, M. Winnewisser, J. W. C. Johns, J. Mol. Spectrosc. 140 (1990) 353 (https://doi.org/10.1016/0022-2852(90)90147-I).

M. Niedenhoff, K. M. T. Yamada, S. P. Belov, G. Winnewisser, J. Mol. Spectrosc. 174 (1995) 151 (https://doi.org/10.1006/jmsp.1995.1277).

M. Niedenhoff, K. M. T. Yamada, G. Winnewisser, J. Mol. Spectrosc. 176 (1996) 342 (https://doi.org/10.1006/jmsp.1996.0096).

S. S. Brown, H. L. Berghout, F. F. Crim, J. Chem. Phys. 106 (1997) 5805 (https://doi.org/10.1063/1.473246).

S. S. Brown, H. L. Berghout, F. F. Crim, J. Chem. Phys. 107 (1997) 9764 (https://doi.org/10.1063/1.475274).

L. Fusina, I. M. Mills, J. Mol. Spectrosc. 86 (1981) 488 (https://doi.org/10.1016/0022-2852(81)90296-4).

M. Niedenhoff, K. M. T. Yamada, M. Winnewisser, S. C. Ross, J. Mol. Struct. 352-353 (1995) 423 (https://doi.org/10.1016/0022-2860(94)08502-9).

L. E. Snyder, D. Buhl, Astrophys. J. 177 (1972) 619 (https://doi.org/10.1086/151739).

A. Coutens, J. K. Jørgensen, M. H. D. van der Wiel, H. S. P. Müller, J. M. Lykke, P. Bjerkeli, T. L. Bourke, H. Calcutt, M. N. Drozdovskaya, C. Favre, E. C. Fayolle, R. T. Garrod, S. K. Jacobsen, N. F. W. Ligterink, K. I. Öberg, M. V. Persson, E. F. van Dishoeck, S. F. Wampfler, Astronomy & Astrophysics 590 (2016) L6 (https://doi.org/10.1051/0004-6361/201628612).

J. M. Jackson, J. T. Armstrong, A. H. Barrett, Astrophys. J. 280 (1984) 608 (https://doi.org/10.1086/162033).

N. Pinnavaia, M.J. Bramley, M.-D. Su, W.H. Green, N.C. Handy, Mol. Phys. 78 (1993) 319 (https://doi.org/10.1080/00268979300100261).

A. L. L. East, C. S. Johnson, W. D. Allen, J. Chem. Phys. 98 (1993) 1299 (https://doi.org/10.1063/1.464298).

M. Mladenović, J. Chem. Phys. 141 (2014) 224304 (https://doi.org/10.1063/1.4903251).

M. Mladenović, M. Lewerenz, Chem. Phys. 343 (2008) 129 (https://doi.org/10.1016/j.chemphys.2007.06.033).

M. Mladenović, M. Elhiyani, M. Lewerenz, J. Chem. Phys. 130 (2009) 154109 (https://doi.org/10.1063/1.3111810).

M. Mladenović, M. Elhiyani, M. Lewerenz, J. Chem. Phys. 131 (2009) 034302 (https://doi.org/10.1063/1.3173275).

MOLPRO, a package of ab initio programs, H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, and others, see http://www.molpro.net

M. Mladenović, P. Botschwina, C. Puzzarini, J. Phys. Chem. A 110 (2006) 5520 (https://doi.org/10.1021/jp056743u).

M. Mladenović, J. Chem. Phys. 112 (2000) 1070 (https://doi.org/10.1063/1.480662 ).

M. Mladenović, M. Lewerenz, Chem. Phys. Lett. 321 (2000) 135 (https://doi.org/10.1016/S0009-2614(00)00321-3).

M. Mladenović, Spectrochim. Acta, Part A 58 (2002) 795 (https://doi.org/10.1016/S1386-1425(01)00669-2).

V. E. Bondybey, J H. English, C. W. Mathews, and R. J. Contolini, J. Mol. Spectrosc. 92 (1982) 431 (https://doi.org/10.1016/0022-2852(82)90113-8).

J. H. Teles, G. Maier, B. A. Hess, Jr., L. J. Schaad, M. Winnewisser, B. P. Winnewisser, Chem. Ber. 122 (1989) 753 (https://doi.org/10.1002/cber.19891220425).

K. M. T. Yamada, J. Mol. Spectrosc. 81 (1980) 139 (https://doi.org/10.1016/0022-2852(80)90334-3).

M. Perić, M. Mladenović, S.D. Peyerimhof, R. J. Buenker, Chem. Phys. 86 (1984) 85 (https://doi.org/10.1016/0301-0104(84)85158-7).




DOI: https://doi.org/10.2298/JSC190427039M

Copyright (c) 2019 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.797 (139 of 171 journals)
5 Year Impact Factor 0.923 (134 of 171 journals)