Vibronic and spin–orbit coupling effects in the absorption spectra of pyrazine: A quantum chemical approach

Main Article Content

Fabian Dinkelbach
Christel Maria Marian
http://orcid.org/0000-0001-7148-0900

Abstract

Derivatives of dipole transition moments between spin–orbit coupled (SOC) multireference configuration interaction wave functions have been used in conjunction with vibrational frequencies from density func­tional theo­ries to compute vibronic S1¬S0 (11B3u¬11Ag ) and T1¬S0 (13B3u¬ 11Ag) abs­orption spectra in Herzberg–Teller approximation. The expe­rimentally known spectra are well reproduced. The calculations reveal unexp­ectedly small spin–orbit couplings between the 13B3u (3nπ*) state and nearby optically bright 1B2u (1ππ*) states, thus explaining the absence of the  () fundamental in the vib­rational fine-structure of the T1¬S0 transition. Adiabatically, two triplet states are found below the S1 state. The out-of-plane distorted T2 minimum results from a pseudo Jahn–Teller interaction between two 3ππ* states of B1u and B2u symmetry. At the D2h-symmetric S0 and S1 minimum geometries, the latter states are located well above S1. The S1 and T2 potentials intersect at geo­metries far away from the Franck–Condon region. This explains the apparently contradictory results that the linewidth in the higher energy regime above the T1¬S0 origin suddenly broadens while no trace of a second triplet state, loc­ated energetically below the S1 origin, could be identified in phosphorescence excitation spectra of the ultracold isolated pyrazine molecule.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
F. Dinkelbach and C. M. Marian, “Vibronic and spin–orbit coupling effects in the absorption spectra of pyrazine: A quantum chemical approach”, J. Serb. Chem. Soc., vol. 84, no. 8, pp. 819–836, Aug. 2019.
Section
Special Issue Devoted to Prof. emeritus Miljenko Perić
Author Biographies

Fabian Dinkelbach, Institute of Theoretical and Computational Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf

PhD student

Christel Maria Marian, Institute of Theoretical and Computational Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf

Prof. Dr.

References

K. K. Innes, I. G. Ross, W. R. Moomaw, J. Mol. Spectrosc. 132 (1988) 492 (https://dx.doi.org/10.1016/0022-2852(88)90343-8)

G. Fischer, Can. J. Chem. 71 (1993) 1537 (https://dx.doi.org/10.1139/v93-193)

J. L. Tomer, K. W. Holtzclaw, D. W. Pratt, L. H. Spangler, J. Chem. Phys. 88 (1988) 1528 (https://dx.doi.org/10.1063/1.454132)

R. M. Hochstrasser, C. Marzzacco, J. Chem. Phys. 49 (1968) 971 (https://dx.doi.org/10.1063/1.1670262)

E. Villa, M. Terazima, E. C. Lim, Chem. Phys. Lett. 129 (1986) 336 (https://dx.doi.org/10.1016/0009-2614(86)80354-2)

K. Nakamura, J. Am. Chem. Soc. 93 (1971) 3138. (https://dx.doi.org/10.1063/1.466618)

C. Woywod, W. Domcke, A. L. Sobolewski, H. J. Werner, J. Chem. Phys. 100 (1994) 1400 (https://dx.doi.org/10.1063/1.466618)

R. Berger, C. Fischer, M. Klessinger, J. Phys. Chem., A 102 (1998) 7157 (https://dx.doi.org/10.1021/JP981597W)

P. Weber, J. R. Reimers, J. Phys. Chem., A 103 (1999) 9830 (https://dx.doi.org/10.1021/JP991404K)

W. Siebrand, M. Z. Zgierski, Chem. Phys. Lett. 67 (1979) 13 (https://dx.doi.org/10.1016/0009-2614(79)87096-7)

J. Franck, Trans. Faraday Soc. 21 (1926) 536 (http://dx.doi.org/10.1039/tf9262100536)

E. U. Condon, Phys. Rev. 28 (1926) 1182 (https://dx.doi.org/10.1103/PhysRev.28.1182)

M. Perić, S. D. Peyerimhoff, R. J. Buenker, Z. Phys., D 24 (1992) 177 (https://dx.doi.org/10.1007/bf01426704)

M. Perić, F. Grein, M. R. J. Hachey, J. Chem. Phys. 113 (2000) 9011 (https://dx.doi.org/10.1063/1.1319645)

M. Perić, S. Jerosimić, M. Mitić, M. Milovanović, R. Ranković, J. Chem. Phys. 142 (2015) 174306 (https://dx.doi.org/10.1063/1.4919285)

G. Herzberg, E. Teller, Z. Phys. Chem. Abt. B 21 (1933) 410 (https://dx.doi.org/10.1515/zpch-1933-2136)

F. Duschinsky, Acta Physicochim. 7 (1937) 551

G. J. Small, J. Chem. Phys. 54 (1971) 3300 (https://dx.doi.org/10.1063/1.1675343)

C. M. Marian, in Reviews in Computational Chemistry, Vol. 17, K. B. Lipkowitz, D. B. Boyd, Eds., Wiley-VCH, New York, 1999, p. 99

S. R. Langhoff, E. R. Davidson, J. Chem. Phys. 64 (1976) 4699 (https://dx.doi.org/10.1063/1.432056)

M. Kleinschmidt, J. Tatchen, C. M. Marian, J. Chem. Phys. 124 (2006) 124101 (https://dx.doi.org/10.1063/1.2173246)

S. Hirata, M. Head-Gordon, Chem. Phys. Lett. 314 (1999) 291 (https://dx.doi.org/10.1016/S0009-2614(99)01149-5)

J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865 (https://dx.doi.org/10.1103/PhysRevLett.77.3865)

C. Adamo, V. Barone, J. Chem. Phys. 110 (1999) 6158 (https://dx.doi.org/10.1063/1.478522)

A. Schäfer, C. Huber, R. Ahlrichs, J. Chem. Phys. 100 (1994) 5829 (https://dx.doi.org/10.1063/1.467146)

TURBOMOLE V7.1, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com, 2017.

F. Weigend, M. Häser, H. Patzelt, R. Ahlrichs, Chem. Phys. Lett. 294 (1998) 143 (https://dx.doi.org/10.1016/S0009-2614(98)00862-8)

J. Neugebauer, M. Reiher, C. Kind, B. A. Hess, J. Comput. Chem. 23 (2002) 895 (https://dx.doi.org/10.1002/jcc.10089)

M. K. Kesharwani, B. Brauer, J. M. L. Martin, J. Phys. Chem., A 119 (2015) 1701 (https://dx.doi.org/10.1021/jp508422u)

S. Grimme, M. Waletzke, J. Chem. Phys. 111 (1999) 5645 (https://dx.doi.org/10.1063/1.479866)

C. M. Marian, A. Heil, M. Kleinschmidt, WIREs Mol. Sci. 9 (2019) e1394 (https://dx.doi.org/10.1002/wcms.1394)

A. D. Becke, J. Chem. Phys. 98 (1993) 1372 (https://dx.doi.org/10.1063/1.464304)

C. Lee, W. Yang, R. G. Parr, Phys. Rev., B 37 (1988) 785 (https://dx.doi.org/10.1103/PhysRevB.37.785)

M. Kleinschmidt, J. Tatchen, C. M. Marian, J. Comput. Chem. 23 (2002) 824 (https://dx.doi.org/10.1002/jcc.10064)

M. Kleinschmidt, C. M. Marian, Chem. Phys. 311 (2005) 71 (https://dx.doi.org/10.1016/J.CHEMPHYS.2004.10.025)

B. A. Heß, C. M. Marian, U. Wahlgren, O. Gropen, Chem. Phys. Lett. 251 (1996) 365 (https://dx.doi.org/10.1016/0009-2614(96)00119-4)

B. Schimmelpfennig, AMFI is an atomic spin-orbit integral program, University of Stockholm, 1996

J. Tatchen, N. Gilka, C. M. Marian, Phys. Chem. Chem. Phys. 9 (2007) 5209 (https://dx.doi.org/10.1039/b706410a)

M. Etinski, J. Tatchen, C. M. Marian, J. Chem. Phys. 134 (2011) 154105 (https://dx.doi.org/10.1063/1.3575582)

M. Etinski, V. Rai-Constapel, C. M. Marian, J. Chem. Phys. 140 (2014) 114104 (https://dx.doi.org/10.1063/1.4868484)

I. C. Walker, M. H. Palmer, Chem. Phys. 153 (1991) 169 (https://dx.doi.org/10.1016/0301-0104(91)90017-N)

M. de Groot, W. J. Buma, J. Chem. Phys. 127 (2007) 104301 (https://dx.doi.org/10.1063/1.2764075)

T. J. Penfold, E. Gindensperger, C. Daniel, C. M. Marian, Chem. Rev. 118 (2018) 6975 (https://dx.doi.org/10.1021/acs.chemrev.7b00617)

M. A. El‐Sayed, J. Chem. Phys. 38 (1963) 2834 (https://dx.doi.org/10.1063/1.1733610)