Maltose-mediated, long-term stabilization of freeze- and spray-dried forms of bovine and porcine hemoglobin
Main Article Content
Abstract
Slaughterhouse blood represents a valuable source of hemoglobin, which can be used in the production of heme-iron based supplements for the prevention/treatment of iron-deficiency anemia. In order to obtain a stable solid-state formulation, the effect of maltose addition (30 %) on the stability and storage of bovine and porcine hemoglobin in powders obtained by spray- and freeze-drying (without maltose: Hb; with maltose: HbM) were investigated. Differential scanning calorimetry of spray- and freeze-dried powders indicated satisfying quality of the formulation prepared with maltose on dissolving back into solution. After two-year storage at room temperature (20±5 °C) in solid forms, protected from moisture and light, rehydrated spray- and freeze-dried HbM were red, while Hb were brown. Dynamic light scattering showed the presence of native hemoglobin monomers in rehydrated spray- and freeze-dried HbM, but their agglomerates in Hb samples. UV–Vis spectrophotometry confirmed an absence of significant hemoglobin denaturation and methemoglobin formation in HbM freeze-dried powders. In spray-dried HbM, an increased level of methemoglobin was detected. The results confirmed the stabilizing effect of maltose, and suggested its use in the production of long-term stable solid-state formulations of hemoglobin, along with drying processes optimization.
Downloads
Metrics
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
C. Camaschella, N. Engl. J. Med. 372 (2015) 1832 (https://www.nejm.org/doi/10.1056/NEJMra1401038)
L. E. Murray-Kolbe, J. Beard Iron. In: Encyclopedia of Dietary Supplements, P.M. Coates, J.M. Betz, M.R. Blackman, G. M. Cragg, M. Levine, J. Moss, J.D. White, Eds. 2nd ed. Informa Healthcare, London and New York, 2010, p 432
R. Hurrell, I. Egli, Am. J. Clin. Nutr. 91 (2010) 1461S (https://doi.org/10.3945/ajcn.2010.28674F)
R. de Olivieira, First Virtual Global Conference on Organic Beef Cattle Production September 02 to October 15, 2002 https://www.cpap.embrapa.br/agencia/congressovirtual/pdf/ingles/02en03.pdf
B. Nowak, T. von Mueffling, J. Food. Prot. 69 (2006) 2183 (https://jfoodprotection.org/doi/pdfplus/10.4315/0362-028X-69.9.2183)
N. C. Jain, Essentials of Veterinary Hematology, Lea & Febiger Philadelphia. 1993
R. Stojanović, V. Ilić, V. Manojlović, D. Bugarski, M. Dević, B. Bugarski, Appl. Biochem. Biotechnol. 166 (2012) 1491 (https://doi.org/10.1007/s12010-012-9543-9)
F. Toldrá, M. C. Aristoy, L. Mora, M. Reig, Meat Sci. 92 (2012) 290 (https://doi.org/10.1016/j.meatsci.2012.04.004)
S. Lynch, A. Mullen, E. O'Neill, C. García, Comp. Rev. Food Sci. Food Saf. 16 (2017) 330 (https://doi.org/10.1111/1541-4337.12254)
N. Tang, L. Chen, H. Zhuang, Food Funct. 5 (2014) 390 (http://dx.doi.org/10.1039/C3FO60292C)
G. González-Rosendo, J. Polo, J. Rodríguez-Jerez, R. Puga-Díaz, E. Reyes-Navarrete, A. Quintero-Gutiérrez, J. Food Sci. 75 (2010) H73 (https://doi.org/10.1111/j.1750-3841.2010.01523.x)
M. Hoppe, B. Brün, M. Larsson, L. Moraeus, L. Hulthén, Nutrition. 29 (2013) 89 (https://doi.org/10.1016/j.nut.2012.04.013)
F. Pizarro, M. Olivares, C. Valenzuela, A. Brito, V. Weinborn, S. Flores, M. Arredondo Food Chem. 196 (2016) 733 (https://doi.org/10.1016/j.foodchem.2015.10.012)
D. Poncelet, A. Picot, S. El Mafadi, Capsulæ. Innov. Food Technol. 22 (2011) 32 (http://www.capsulae.com/media/copy_inftissuefeb2011__029884800_1734_06062011__094901400_1554_12022014.pdf)
B. Kerwin, M. Heller, S. Levin, T. Randolph, J. Pharm. Sci. 87 (1998) 1062 (https://doi.org/10.1021/js980140v)
M.C. Heller, J.F. Carpenter, T.W. Randolph, Biotechnol. Prog. 13 (1997) 590 (https://doi.org/10.1021/bp970081b)
S. Timasheff, Biochemistry. 41 (2002) 13473 (https://doi.org/10.1021/bi020316e)
N. Soltanizadeh, L. Mirmoghtadaie, F. Nejati, L. Najafabadi, M. Heshmati, M. Jafari, Comp. Rev. Food Sci. Food Saf. 13 (2014) 860 (https://doi.org/10.1111/1541-4337.12089)
S. Ajito, H. Iwase, S. I. Takata, M. Hirai, J. Phys. Chem. B. 122 (2018) 8685 (https://pubs.acs.org/doi/10.1021/acs.jpcb.8b06572)
J. Kaushik, R. Bhat, J. Biol. Chem. 278 (2003) 26458 (https://doi.org/10.1074/jbc.m300815200)
J. Chung, S. Takeoka, H. Nishide, E. Tsuchida, Polymers Adv. Technol. 5 (1994) 385 (https://doi.org/10.1002/pat.1994.220050704)
S. Sastry, J. Nyshadham, J. Fix, Pharm. Sci. Technol. Today 3 (2000) 138 (https://doi.org/10.1016/s1461-5347(00)00247-9)
I. Kostić, V. Ilić, V. Đorđević, K. Bukara, S. Mojsilović, V. Nedović, D. Bugarski, Ð. Veljović, D. Mišić, B. Bugarski, Colloid. Surf. B: Biointerfaces 122 (2014) 250 (https://doi.org/10.1016/j.colsurfb.2014.06.043)
P. Salvador, M. Toldrà, D. Parés, C. Carretero, E. Saguer, Meat Sci. 83 (2009) 328 (https://doi.org/10.1016/j.meatsci.2009.06.001)
C.M. Johnson, Arch. Biochem. Biophys. 531 (2013) 100 (http://dx.doi.org/10.1016/j.abb.2012.09.008)
H. Sakai, Y. Masada, S. Takeoka, E.Tsuchida, J. Biochem. 131 (2002) 611 (https://www.jstage.jst.go.jp/article/biochemistry1922/131/4/131_4_611/_pdf)
H. Shirahama, K. Suzuki, T. Suzawa, J. Colloid. Inter. Sci. 129 (1989) 483 (https://doi.org/10.1016/0021-9797(89)90462-1)
E. Domingues-Hamdi, C. Vasseur, J.B. Fournier, M. C. Marden, H. Wajcman, V. Baudin-Creuza, PLoS One. 9 (2014) e111395 (https://doi.org/10.1371/journal.pone.0111395)
D. Guo, R. Liu, J. Biochem. Mol. Toxicol. 31 (2017) e21953 (https://doi.org/10.1002/jbt.21953)
A.D. Laurent, X. Assfeld, Interdiscip. Sci. Comput. Life Sci. 2 (2010) 38 (https://doi.org/10.1007/s12539-010-0084-z)
S. M. Sherif, E. I. Amal, Roman. J. Biophys. 20 (2010) 269 (https://www.rjb.ro/articles/286/art08Sherif.pdf)
W. G. Zijlstra, A. A. Buursma, W. P. Meeuwsen-van der Roest, Clin. Chem. 37 (1991) 1633 (http://clinchem.aaccjnls.org/content/37/9/1633)
A. Abdul‐Fattah, D. Kalonia, M. Pikal, J. Pharm. Sci. 96 (2007) 1886 (https://doi.org/10.1002/jps.20842)
P. Labrude, M. Rasolomanana, C. Vigneron, C. Thirion, B. Chaillot, J. Pharm. Sci. 78 (1989) 223 (https://doi.org/10.1002/jps.2600780311)
B. Wang, M.T. Cicerone, Y. Aso, M. J. Pikal, J. Pharm. Sci. 99 (2010) 683 (https://doi.org/10.1002/jps.21960)
L. Chang, D. Shepherd, J. Sun, D. Ouellett, K.L. Grant, X.C. Tang, M.J. Pikal, J. Pharm. Sci. 94 (2005) 1427 (https://doi.org/10.1002/jps.20363)
K. Kawai, T. Hagiwara, R. Takai, T. Suzuki, Pharm. Res. 22 (2005) 490 (https://doi.org/10.1007/s11095-004-1887-6)
I. Koshiyama, M. Hamano, D. Fukushima, Food Chem. 6 (1981) 309 (https://doi.org/10.1016/0308-8146(81)90004-2)
F. He, S. Hogan, R.F. Latypov, L.O. Narhi, V.I. Razinkov, J. Pharm. Sci. 99 (2010) 1707 (https://doi.org/10.1002/jps.21955)
H. Li, Y. Chen, Z. Li, X. Li, Q. Jin, J. Ji, Biomacromolecules. 19 (2018) 2007 (https://doi.org/10.1021/acs.biomac.8b00241)
E. K. Hanson, J. Ballantyne, Plos One 5 (2010) e12830 (https://doi.org/10.1371/journal.pone.0012830)
C. Bonaventura, R. Henkens, A. I. Alayash, S. Banerjee, A. L. Crumbliss, Antioxid. Redox Signal. 18 (2013) 2298 (https://doi.org/10.1089/ars.2012.4947)
J. Carpenter, J. Crowe, Biochemistry. 28 (1989) 3916 (https://doi.org/10.1021/bi00435a044)
J. Sampedro, S. Uribe, Mol. Cell. Biochem. 256 (2004) (https://doi.org/10.1023/b:mcbi.0000009878.21929.eb)