Maltose-mediated long-term stabilization of freeze- and spray- dried forms of bovine and porcine hemoglobin

Ivana Drvenica, Ana Stančić, Ana Kalušević, Smilja Marković, Jelena Dragišić Maksimović, Viktor Nedović, Branko Bugarski, Vesna Ilić

Abstract


Slaughterhouse blood represents a valuable source of hemoglobin, which can be used in production of heme-iron based supplements for preven­tion/treatment of iron-deficiency anemia. In order to obtain stable solid-state formulation, we have investigated the effect of maltose addition (30 % (w/v)) on stability and storage of bovine and porcine hemoglobin in the powders obtained by spray- and freeze- drying (without maltose: Hb; with maltose: HbM).

Differential scanning calorimetry of spray- and freeze-dried powders pointed toward satisfying quality of the formulation prepared with maltose on dissolving back into solution. After two-year storage at room temperature (20±5 ºC) in solid forms, protected from moisture and light, rehydrated spray- and freeze-dried HbM were red, while Hb were brown. Dynamic light scattering showed presence of native hemoglobin monomers in rehydrated spray- and freeze- dried HbM, but their agglomerates in Hb samples. UV-VIS spectrometry confirmed an absence of a significant hemoglobin denaturation and methemoglobin formation in HbM freeze- dried powders. In spray-dried HbM, an increased level of methemoglobin was detected. The results confirmed stabilizing effect of maltose, and suggested its use in production of long-term stable solid-state formulations of hemoglobin, along with drying processes optimization.


Keywords


slaughterhouse blood; heme-iron protein; dynamic light scattering; UV-VIS spectroscopy

Full Text:

PDF (1,823 kB)

References


C. Camaschella, N. Engl. J. Med. 372 (2015) 1832 (https://www.nejm.org/doi/10.1056/NEJMra1401038)

L. E. Murray-Kolbe, J. Beard Iron. In: Encyclopedia of Dietary Supplements, P.M. Coates, J.M. Betz, M.R. Blackman, G. M. Cragg, M. Levine, J. Moss, J.D. White, Eds. 2nd ed. Informa Healthcare, London and New York, 2010, p 432

R. Hurrell, I. Egli, Am. J. Clin. Nutr. 91 (2010) 1461S (https://doi.org/10.3945/ajcn.2010.28674F)

R. de Olivieira, First Virtual Global Conference on Organic Beef Cattle Production September 02 to October 15, 2002 https://www.cpap.embrapa.br/agencia/congressovirtual/pdf/ingles/02en03.pdf

B. Nowak, T. von Mueffling, J. Food. Prot. 69 (2006) 2183 (https://jfoodprotection.org/doi/pdfplus/10.4315/0362-028X-69.9.2183)

N. C. Jain, Essentials of Veterinary Hematology, Lea & Febiger Philadelphia. 1993

R. Stojanović, V. Ilić, V. Manojlović, D. Bugarski, M. Dević, B. Bugarski, Appl. Biochem. Biotechnol. 166 (2012) 1491 (https://doi.org/10.1007/s12010-012-9543-9)

F. Toldrá, M. C. Aristoy, L. Mora, M. Reig, Meat Sci. 92 (2012) 290 (https://doi.org/10.1016/j.meatsci.2012.04.004)

S. Lynch, A. Mullen, E. O'Neill, C. García, Comp. Rev. Food Sci. Food Saf. 16 (2017) 330 (https://doi.org/10.1111/1541-4337.12254)

N. Tang, L. Chen, H. Zhuang, Food Funct. 5 (2014) 390 (http://dx.doi.org/10.1039/C3FO60292C)

G. González-Rosendo, J. Polo, J. Rodríguez-Jerez, R. Puga-Díaz, E. Reyes-Navarrete, A. Quintero-Gutiérrez, J. Food Sci. 75 (2010) H73 (https://doi.org/10.1111/j.1750-3841.2010.01523.x)

M. Hoppe, B. Brün, M. Larsson, L. Moraeus, L. Hulthén, Nutrition. 29 (2013) 89 (https://doi.org/10.1016/j.nut.2012.04.013)

F. Pizarro, M. Olivares, C. Valenzuela, A. Brito, V. Weinborn, S. Flores, M. Arredondo Food Chem. 196 (2016) 733 (https://doi.org/10.1016/j.foodchem.2015.10.012)

D. Poncelet, A. Picot, S. El Mafadi, Capsulæ. Innov. Food Technol. 22 (2011) 32 (http://www.capsulae.com/media/copy_inftissuefeb2011__029884800_1734_06062011__094901400_1554_12022014.pdf)

B. Kerwin, M. Heller, S. Levin, T. Randolph, J. Pharm. Sci. 87 (1998) 1062 (https://doi.org/10.1021/js980140v)

M.C. Heller, J.F. Carpenter, T.W. Randolph, Biotechnol. Prog. 13 (1997) 590 (https://doi.org/10.1021/bp970081b)

S. Timasheff, Biochemistry. 41 (2002) 13473 (https://doi.org/10.1021/bi020316e)

N. Soltanizadeh, L. Mirmoghtadaie, F. Nejati, L. Najafabadi, M. Heshmati, M. Jafari, Comp. Rev. Food Sci. Food Saf. 13 (2014) 860 (https://doi.org/10.1111/1541-4337.12089)

S. Ajito, H. Iwase, S. I. Takata, M. Hirai, J. Phys. Chem. B. 122 (2018) 8685 (https://pubs.acs.org/doi/10.1021/acs.jpcb.8b06572)

J. Kaushik, R. Bhat, J. Biol. Chem. 278 (2003) 26458 (https://doi.org/10.1074/jbc.m300815200)

J. Chung, S. Takeoka, H. Nishide, E. Tsuchida, Polymers Adv. Technol. 5 (1994) 385 (https://doi.org/10.1002/pat.1994.220050704)

S. Sastry, J. Nyshadham, J. Fix, Pharm. Sci. Technol. Today 3 (2000) 138 (https://doi.org/10.1016/s1461-5347(00)00247-9)

I. Kostić, V. Ilić, V. Đorđević, K. Bukara, S. Mojsilović, V. Nedović, D. Bugarski, Ð. Veljović, D. Mišić, B. Bugarski, Colloid. Surf. B: Biointerfaces 122 (2014) 250 (https://doi.org/10.1016/j.colsurfb.2014.06.043)

P. Salvador, M. Toldrà, D. Parés, C. Carretero, E. Saguer, Meat Sci. 83 (2009) 328 (https://doi.org/10.1016/j.meatsci.2009.06.001)

C.M. Johnson, Arch. Biochem. Biophys. 531 (2013) 100 (http://dx.doi.org/10.1016/j.abb.2012.09.008)

H. Sakai, Y. Masada, S. Takeoka, E.Tsuchida, J. Biochem. 131 (2002) 611 (https://www.jstage.jst.go.jp/article/biochemistry1922/131/4/131_4_611/_pdf)

H. Shirahama, K. Suzuki, T. Suzawa, J. Colloid. Inter. Sci. 129 (1989) 483 (https://doi.org/10.1016/0021-9797(89)90462-1)

E. Domingues-Hamdi, C. Vasseur, J.B. Fournier, M. C. Marden, H. Wajcman, V. Baudin-Creuza, PLoS One. 9 (2014) e111395 (https://doi.org/10.1371/journal.pone.0111395)

D. Guo, R. Liu, J. Biochem. Mol. Toxicol. 31 (2017) e21953 (https://doi.org/10.1002/jbt.21953)

A.D. Laurent, X. Assfeld, Interdiscip. Sci. Comput. Life Sci. 2 (2010) 38 (https://doi.org/10.1007/s12539-010-0084-z)

S. M. Sherif, E. I. Amal, Roman. J. Biophys. 20 (2010) 269 (https://www.rjb.ro/articles/286/art08Sherif.pdf)

W. G. Zijlstra, A. A. Buursma, W. P. Meeuwsen-van der Roest, Clin. Chem. 37 (1991) 1633 (http://clinchem.aaccjnls.org/content/37/9/1633)

A. Abdul‐Fattah, D. Kalonia, M. Pikal, J. Pharm. Sci. 96 (2007) 1886 (https://doi.org/10.1002/jps.20842)

P. Labrude, M. Rasolomanana, C. Vigneron, C. Thirion, B. Chaillot, J. Pharm. Sci. 78 (1989) 223 (https://doi.org/10.1002/jps.2600780311)

B. Wang, M.T. Cicerone, Y. Aso, M. J. Pikal, J. Pharm. Sci. 99 (2010) 683 (https://doi.org/10.1002/jps.21960)

L. Chang, D. Shepherd, J. Sun, D. Ouellett, K.L. Grant, X.C. Tang, M.J. Pikal, J. Pharm. Sci. 94 (2005) 1427 (https://doi.org/10.1002/jps.20363)

K. Kawai, T. Hagiwara, R. Takai, T. Suzuki, Pharm. Res. 22 (2005) 490 (https://doi.org/10.1007/s11095-004-1887-6)

I. Koshiyama, M. Hamano, D. Fukushima, Food Chem. 6 (1981) 309 (https://doi.org/10.1016/0308-8146(81)90004-2)

F. He, S. Hogan, R.F. Latypov, L.O. Narhi, V.I. Razinkov, J. Pharm. Sci. 99 (2010) 1707 (https://doi.org/10.1002/jps.21955)

H. Li, Y. Chen, Z. Li, X. Li, Q. Jin, J. Ji, Biomacromolecules. 19 (2018) 2007 (https://doi.org/10.1021/acs.biomac.8b00241)

E. K. Hanson, J. Ballantyne, Plos One 5 (2010) e12830 (https://doi.org/10.1371/journal.pone.0012830)

C. Bonaventura, R. Henkens, A. I. Alayash, S. Banerjee, A. L. Crumbliss, Antioxid. Redox Signal. 18 (2013) 2298 (https://doi.org/10.1089/ars.2012.4947)

J. Carpenter, J. Crowe, Biochemistry. 28 (1989) 3916 (https://doi.org/10.1021/bi00435a044)

J. Sampedro, S. Uribe, Mol. Cell. Biochem. 256 (2004) (https://doi.org/10.1023/b:mcbi.0000009878.21929.eb)




DOI: https://doi.org/10.2298/JSC190513067D

Copyright (c) 2019 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)