Synthesis, characterization and adsorption studies of nano-composite hydrogels and the effect of SiO2 on the capacity for the removal of Methylene Blue dye

Main Article Content

Sinan Temel
Elif Yaman
Nurgul Ozbay
Fatma Ozge Gokmen

Abstract

Nanocomposite hydrogels were produced by free radical polymer­ization of acrylic acid and N-vinylpyrrolidone in the presence of SiO2 nano­par­ticles. The chemical and morphological structures of the hydrogels were deter­mined using Fourier transform infra-red spectroscopy (FT-IR) and field emis­sion scanning electron microscopy (FESEM). The nanocomposite hydrogels were used for the adsorption and desorption of Methylene Blue dye from wastewater. Wastewater was referred to distilled water that contained Methyl­ene Blue dye under laboratory conditions. The carbon, hydrogen and nitrogen contents of the dye, hydrogels and dye-adsorbed hydrogels were determined by elemental analysis. The influences of SiO2 nanoparticles and copolymerization on the adsorption capacity were studied. The maximum dye removal of 98.3 % was obtained with AA-co-VP (3:1) copolymeric hydrogel. The synthesized hydrogels could be evaluated as adsorbents in wastewater treatment, effectively.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
S. Temel, E. Yaman, N. Ozbay, and F. O. Gokmen, “Synthesis, characterization and adsorption studies of nano-composite hydrogels and the effect of SiO2 on the capacity for the removal of Methylene Blue dye”, J. Serb. Chem. Soc., vol. 85, no. 7, pp. 939–952, Jul. 2020.
Section
Polymers
Author Biographies

Sinan Temel, Central Research Laboratory, Bilecik Seyh Edebali University, 11230, Bilecik

Central Research Laboratory

Elif Yaman, Central Research Laboratory, Bilecik Seyh Edebali University, 11230, Bilecik

Central Research Laboratory

Nurgul Ozbay, Chemical Engineering Department, Bilecik Seyh Edebali University, 11230, Bilecik

Chemical Engineering Department

Fatma Ozge Gokmen, Central Research Laboratory, Bilecik Seyh Edebali University, 11230, Bilecik

Central Research Laboratory

References

J. Gomez-Pastora, E. Bringas, I. Ortiz, Chem. Eng. J. 256 (2014) 187 (http://dx.doi.org/10.1016/j.cej.2014.06.119)

R. Liu, X. Shen, X. Yang, Q. Wang, F. Yang, J. Nanopart. Res. 15 (2013) 1 (https://doi.org/10.1007/s11051-013-1679-10)

F. Ge, H. Ye, M. M. Li, B. X. Zhao, Chem. Eng. J. 17 (2012) 198 (https://doi.org/10.1016/j.cej.2012.05.074)

A. Debrassi, A. F. Correa, T. Baccarin, N. Nedelko, A. Slawska-Waniewska, K. Sobczak, P. Dluzewski, J. M. Greneche, C. A. Rodrigues, Chem. Eng. J. 183 (2013) 284 (https://doi.org/10.1016/j.cej.2011.12.078)

A. Anglada, M. J. Rivero, I. Ortiz, A. Urtiaga, J. Chem. Technol. Biotechnol. 83 (2008) 1339 (https://doi.org/10.1002/jctb.1981)

M. Faraji, Y. Yamini, E. Tahmasebi, A. Saleh, F. Nourmohammadian, J. Iran. Chem. Soc. 7 (2010) 130 (https://doi.org/10.1007/BF03246192)

A. Afkhami, R. Moosavi, J. Hazard. Mater. 174 (2010) 398 (https://doi.org/10.1016/j.jhazmat.2009.09.066)

F. Keyhanian, S. Shariati, M. Faraji, M. Hesabi, Arab. J. Chem. 9 (2011) 348 (http://dx.doi.org/10.1016/j.arabjc.2011.04.012)

B. Tasdelen, D. Izlen, S. Meric, Colloids Surfaces, A 519 (2017) 245 (https://doi.org/10.1016/j.colsurfa.2016.11.003)

B. H. Hameed, A. T. M. Din, A. L. Ahmad, J. Hazard. Mater. 141 (2007) 819 (https://doi.org/10.1016/j.jhazmat.2006.07.049)

F. Fu, Q. Wang, J. Environ. Manage. 92 (2011) 407 (https://doi.org/10.1016/j.jenvman.2010.11.011)

I. Fernandez-Olmo, A. Ortiz, A. Urtiaga, I. Ortiz, J. Chem. Technol. Biotechnol. 83 (2008) 1616 (https://doi.org/10.1002/jctb.1997)

A. Urtiaga, E. Bringas, R. Mediavilla, I. Ortiz, J. Membr. Sci. 356 (2010) 88 (https://doi.org/10.1016/j.memsci.2010.03.034)

M. F. San Roman, I. Ortiz Gandara, R. Ibanaz, I. Ortiz, J. Membr. Sci. 415 (2012) 616 (https://doi.org/10.1016/j.memsci.2012.05.063)

J. Saiz, E. Bringas, I. Ortiz, J. Chem. Technol. Biotech. 89 (2014) 909 (https://doi.org/10.1002/jctb.4331)

S. Thakur, O. Arotiba, Ads. Sci. Technol. 36 (2017) 458 (https://doi.org/10.1177/0263617417700636)

A. R. Hernandez-Martínez, J. A. Lujan-Montelongo, C. Silva-Cuevas, J. D. Mota-

-Morales, M. Cortez-Valadez, Á. J. Ruíz-Baltazar, M. Cruze, J. Herrera-Ordonez, React. Funct. Polym. 122 (2018) 75 (https://doi.org/10.1016/j.reactfunctpolym.2017.11.008)

H. Dai, Y. Zhang, L. Ma, H. Zhang, H. Huang, J. Carb. Pol. 215 (2019) 366 (https://doi.org/10.1016/j.carbpol.2019.03.090)

F. Bergaya, C. Detellier, J. F. Lambert, G. Lagaly, Handbook of Clay Science, Developments of Clay Science, Elsevier, London, 2013 (eBook ISBN: 9780080457635 Hardcover ISBN:9780080441832)

T. Jiao, H. Zhao, J. Zhou, Q. Zhang, X. Luo, J. Hu, Q. Peng, X. Yan, ACS Sustain. Chem. Eng. 3 (2015) 3130 (https://doi.org/0.1021/acssuschemeng.5b00695)

T. Jiao, H. Guo, Q. Zhang, Q. Peng, Y. Tang, X. Yan, B. Li, Sci. Rep. 5 (2016) 11873 (https://doi.org/10.1038/srep11873)

Y. Liu, Y. Zheng, A. Wang, Ads. Sci. Tech. 28 (2010) 913 (https://doi.org/10.1260/0263-6174.28.10.913)

S. Thakur, S. Pandey, O. A. Arotiba, Carbohydr. Polym. 153 (2016) 34 (https://doi.org/10.1016/j.carbpol.2016.06.104)

K. Haraguchi, T. Takehisa, S. Fan, Macromolecules 25 (2002) 10162 (https://doi.org/10.1021/ma021301r)

F. Ö. Gökmen, N. Pekel-Bayramgil, Eur. Chem. Bull. 6 (2017) 514 (https://doi.org/10.17628/ecb.2017.6. 514-518)

N. A. Peppas, A. R. Khare, Adv. Drug Del. Rev. 11 (1993) 1 (https://doi.org/10.1016/0169-409X(93)90025-Y)

A. Singh, P. K. Sharma, V. K. Garg, G. Garg, Int. J. Pharm. Sci. Rev. Res. 4 (2010) 97

X. Sun, G. Zhang, Q. Shi, B. Tang, Z. J. Wu, Appl. Polym. Sci. 86 (2002) 3212 (https://doi.org/10.1002/1097-4628(20010404)80:1<115::AID-APP1079>3.0.CO;2-K)

N. Kashyap, N. Kumar, M. Kumar, Crit. Rev. Ther. Drug 22 (2005) 107 (https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v22.i2.10)

O. V. Ovchinnikov, A. V. Evtukhova, T. S. Kondratenko, M. S. Smirnov, V. Y. Khokhlov, O. V. Erina, Vib. Spectrosc. 86 (2016) 181 (https://doi.org/10.1016/j.vibspec.2016.06.016).