Synthesis, characterization and adsorption studies of nano-composite hydrogels and the effect of SiO2 on the capacity for the removal of Methylene Blue dye
Main Article Content
Abstract
Nanocomposite hydrogels were produced by free radical polymerization of acrylic acid and N-vinylpyrrolidone in the presence of SiO2 nanoparticles. The chemical and morphological structures of the hydrogels were determined using Fourier transform infra-red spectroscopy (FT-IR) and field emission scanning electron microscopy (FESEM). The nanocomposite hydrogels were used for the adsorption and desorption of Methylene Blue dye from wastewater. Wastewater was referred to distilled water that contained Methylene Blue dye under laboratory conditions. The carbon, hydrogen and nitrogen contents of the dye, hydrogels and dye-adsorbed hydrogels were determined by elemental analysis. The influences of SiO2 nanoparticles and copolymerization on the adsorption capacity were studied. The maximum dye removal of 98.3 % was obtained with AA-co-VP (3:1) copolymeric hydrogel. The synthesized hydrogels could be evaluated as adsorbents in wastewater treatment, effectively.
Downloads
Metrics
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
J. Gomez-Pastora, E. Bringas, I. Ortiz, Chem. Eng. J. 256 (2014) 187 (http://dx.doi.org/10.1016/j.cej.2014.06.119)
R. Liu, X. Shen, X. Yang, Q. Wang, F. Yang, J. Nanopart. Res. 15 (2013) 1 (https://doi.org/10.1007/s11051-013-1679-10)
F. Ge, H. Ye, M. M. Li, B. X. Zhao, Chem. Eng. J. 17 (2012) 198 (https://doi.org/10.1016/j.cej.2012.05.074)
A. Debrassi, A. F. Correa, T. Baccarin, N. Nedelko, A. Slawska-Waniewska, K. Sobczak, P. Dluzewski, J. M. Greneche, C. A. Rodrigues, Chem. Eng. J. 183 (2013) 284 (https://doi.org/10.1016/j.cej.2011.12.078)
A. Anglada, M. J. Rivero, I. Ortiz, A. Urtiaga, J. Chem. Technol. Biotechnol. 83 (2008) 1339 (https://doi.org/10.1002/jctb.1981)
M. Faraji, Y. Yamini, E. Tahmasebi, A. Saleh, F. Nourmohammadian, J. Iran. Chem. Soc. 7 (2010) 130 (https://doi.org/10.1007/BF03246192)
A. Afkhami, R. Moosavi, J. Hazard. Mater. 174 (2010) 398 (https://doi.org/10.1016/j.jhazmat.2009.09.066)
F. Keyhanian, S. Shariati, M. Faraji, M. Hesabi, Arab. J. Chem. 9 (2011) 348 (http://dx.doi.org/10.1016/j.arabjc.2011.04.012)
B. Tasdelen, D. Izlen, S. Meric, Colloids Surfaces, A 519 (2017) 245 (https://doi.org/10.1016/j.colsurfa.2016.11.003)
B. H. Hameed, A. T. M. Din, A. L. Ahmad, J. Hazard. Mater. 141 (2007) 819 (https://doi.org/10.1016/j.jhazmat.2006.07.049)
F. Fu, Q. Wang, J. Environ. Manage. 92 (2011) 407 (https://doi.org/10.1016/j.jenvman.2010.11.011)
I. Fernandez-Olmo, A. Ortiz, A. Urtiaga, I. Ortiz, J. Chem. Technol. Biotechnol. 83 (2008) 1616 (https://doi.org/10.1002/jctb.1997)
A. Urtiaga, E. Bringas, R. Mediavilla, I. Ortiz, J. Membr. Sci. 356 (2010) 88 (https://doi.org/10.1016/j.memsci.2010.03.034)
M. F. San Roman, I. Ortiz Gandara, R. Ibanaz, I. Ortiz, J. Membr. Sci. 415 (2012) 616 (https://doi.org/10.1016/j.memsci.2012.05.063)
J. Saiz, E. Bringas, I. Ortiz, J. Chem. Technol. Biotech. 89 (2014) 909 (https://doi.org/10.1002/jctb.4331)
S. Thakur, O. Arotiba, Ads. Sci. Technol. 36 (2017) 458 (https://doi.org/10.1177/0263617417700636)
A. R. Hernandez-Martínez, J. A. Lujan-Montelongo, C. Silva-Cuevas, J. D. Mota-
-Morales, M. Cortez-Valadez, Á. J. Ruíz-Baltazar, M. Cruze, J. Herrera-Ordonez, React. Funct. Polym. 122 (2018) 75 (https://doi.org/10.1016/j.reactfunctpolym.2017.11.008)
H. Dai, Y. Zhang, L. Ma, H. Zhang, H. Huang, J. Carb. Pol. 215 (2019) 366 (https://doi.org/10.1016/j.carbpol.2019.03.090)
F. Bergaya, C. Detellier, J. F. Lambert, G. Lagaly, Handbook of Clay Science, Developments of Clay Science, Elsevier, London, 2013 (eBook ISBN: 9780080457635 Hardcover ISBN:9780080441832)
T. Jiao, H. Zhao, J. Zhou, Q. Zhang, X. Luo, J. Hu, Q. Peng, X. Yan, ACS Sustain. Chem. Eng. 3 (2015) 3130 (https://doi.org/0.1021/acssuschemeng.5b00695)
T. Jiao, H. Guo, Q. Zhang, Q. Peng, Y. Tang, X. Yan, B. Li, Sci. Rep. 5 (2016) 11873 (https://doi.org/10.1038/srep11873)
Y. Liu, Y. Zheng, A. Wang, Ads. Sci. Tech. 28 (2010) 913 (https://doi.org/10.1260/0263-6174.28.10.913)
S. Thakur, S. Pandey, O. A. Arotiba, Carbohydr. Polym. 153 (2016) 34 (https://doi.org/10.1016/j.carbpol.2016.06.104)
K. Haraguchi, T. Takehisa, S. Fan, Macromolecules 25 (2002) 10162 (https://doi.org/10.1021/ma021301r)
F. Ö. Gökmen, N. Pekel-Bayramgil, Eur. Chem. Bull. 6 (2017) 514 (https://doi.org/10.17628/ecb.2017.6. 514-518)
N. A. Peppas, A. R. Khare, Adv. Drug Del. Rev. 11 (1993) 1 (https://doi.org/10.1016/0169-409X(93)90025-Y)
A. Singh, P. K. Sharma, V. K. Garg, G. Garg, Int. J. Pharm. Sci. Rev. Res. 4 (2010) 97
X. Sun, G. Zhang, Q. Shi, B. Tang, Z. J. Wu, Appl. Polym. Sci. 86 (2002) 3212 (https://doi.org/10.1002/1097-4628(20010404)80:1<115::AID-APP1079>3.0.CO;2-K)
N. Kashyap, N. Kumar, M. Kumar, Crit. Rev. Ther. Drug 22 (2005) 107 (https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v22.i2.10)
O. V. Ovchinnikov, A. V. Evtukhova, T. S. Kondratenko, M. S. Smirnov, V. Y. Khokhlov, O. V. Erina, Vib. Spectrosc. 86 (2016) 181 (https://doi.org/10.1016/j.vibspec.2016.06.016).