Synthesis, characterization and adsorption studies of nanocomposite hydrogels and SiO2 effect on removal capacity of methylene blue dye

Sinan Temel, Elif Yaman, Nurgul Ozbay, Fatma Ozge Gokmen

Abstract


Nanocomposite hydrogels were produced by free radical polymeri­za­tion of acrylic acid and N-vinylpyrrolidone in the presence of SiO2 nanoparticles. The chemical and morphological structures of hydrogels were determined using Fourier Transform Infra-Red Spectroscopy (FT-IR) and Field Emission Scanning Electron Microscopy (FESEM). Nanocomposite hydrogels were used for the adsorption and desorption of methylene blue dye from wastewater. Wastewater was referred as a distilled water which contained methylene blue dye at labora­to­ry conditions.  The carbon, hydrogen, and nitrogen contents of dye, hydrogels, and dye adsorbed hydrogels- were determined by elemental analysis. The influ­ences of SiO2 nanoparticles and copolymerization on adsorption capacity were studied. The maximum dye removal of 98.3 % was obtained with AA-co-VP (3:1) copolymeric hydrogel. The synthesized hydrogels can be evalu­ated as adsorbents in wastewater treatment, effectively.


Keywords


wastewater treatment, textile dyes, acrylic acid hydrogels, vinyl pyrrolidone, SiO2 nanoparticles

Full Text:

PDF (2,303 kB)

References


J. Gomez-Pastora, E. Bringas, I. Ortiz, Chem. Eng. J. 256 (2014) 187 (http://dx.doi.org/10.1016/j.cej.2014.06.119)

R. Liu, X. Shen, X. Yang, Q. Wang, F. Yang, J. Nanopart. Res. 15 (2013) 1 (https://doi.org/10.1007/s11051-013-1679-10)

F. Ge, H. Ye, M.M. Li, B. X. Zhao, Chem. Eng. J. 17 (2012) 198 (https://doi.org/10.1016/j.cej.2012.05.074)

A. Debrassi, A.F. Correa, T. Baccarin, N. Nedelko, A. Slawska-Waniewska, K. Sobczak, P. Dluzewski, J.M. Greneche, C.A. Rodrigues, Chem. Eng. J. 183 (2013) 284 (https://doi.org/10.1016/j.cej.2011.12.078)

A. Anglada, M.J. Rivero, I. Ortiz, A. Urtiaga, J. Chem. Technol. Biotecnol. 83 (2008) 1339 (https://doi.org/10.1002/jctb.1981)

M. Faraji, Y. Yamini, E. Tahmasebi, A. Saleh, F. Nourmohammadian, J. Iran. Chem. Soc. 7 (2010) 130 (https://doi.org/10.1007/BF03246192)

A. Afkhami, R. Moosavi, J. Hazard. Mater. 174 (2010) 398 (https://doi.org/10.1016/j.jhazmat.2009.09.066)

F. Keyhanian, S. Shariati, M. Faraji, M. Hesabi, Arab. J. Chem. 9 (2011) 348 (http://dx.doi.org/10.1016/j.arabjc.2011.04.012)

B. Tasdelen, D. Izlen, S. Meric, Colloids and Surf. A: Physicochem. Eng. Aspects 519 (2017) 245 (https://doi.org/10.1016/j.colsurfa.2016.11.003)

B.H. Hameed, A.T.M. Din, A.L. Ahmad, J. Hazard. Mater. 141 (2007) 819 (https://doi.org/10.1016/j.jhazmat.2006.07.049)

F. Fu, Q. Wang, J. Environ. Manage. 92 (2011) 407 (https://doi.org/10.1016/j.jenvman.2010.11.011)

I. Fernandez-Olmo, A. Ortiz, A. Urtiaga, I. Ortiz, J. Chem. Technol. Biotechnol. 83 (2008) 1616 (https://doi.org/10.1002/jctb.1997)

A. Urtiaga, E. Bringas, R. Mediavilla, I. Ortiz, J. Membr. Sci. 356 (2010) 88 (https://doi.org/10.1016/j.memsci.2010.03.034)

M.F. San Roman, I. Ortiz Gandara, R. Ibanaz, I. Ortiz, J. Membr. Sci. 415 (2012) 616 (https://doi.org/10.1016/j.memsci.2012.05.063)

J. Saiz, E. Bringas, I. Ortiz, J. Chem. Technol. Biot. 89 (2014) 909 (https://doi.org/10.1002/jctb.4331)

S. Thakur, O. Arotiba, Adsorpt. Sci. Technol. 36 (2017) 458 (https://doi.org/10.1177/0263617417700636)

A.R. Hernandez-Martínez, J.A. Lujan-Montelongo, C. Silva-Cuevas, J.D. Mota-Morales, M. Cortez-Valadez, Á.J. Ruíz-Baltazar, M. Cruze, J. Herrera-Ordonez, React. Funct. Polym. 122 (2018) 75 (https://doi.org/10.1016/j.reactfunctpolym.2017.11.008)

H. Dai, Y. Zhang, L. Ma, H. Zhang, H. Huang, J. Carb. Pol. 215 (2019) 366 (https://doi.org/10.1016/j.carbpol.2019.03.090)

F. Bergaya, C. Detellier, J.F. Lambert, G. Lagaly, Handbook of Clay Science, Developments of Clay Science, Elsevier, UK, 2013 (eBook ISBN: 9780080457635 Hardcover ISBN:9780080441832)

T. Jiao, H. Zhao, J. Zhou, Q. Zhang, X. Luo, J. Hu, Q. Peng, X. Yan, ACS Sustain. Chem. Eng. 3 (2015) 3130 (https://doi.org/0.1021/acssuschemeng.5b00695)

T. Jiao, H. Guo, Q. Zhang, Q. Peng, Y. Tang, X. Yan, B. Li, Sci. Rep. 5 (2016) 11873 (https://doi.org/10.1038/srep11873)

Y. Liu, Y. Zheng, A. Wang, Adsorpt. Sci. Tech. 28 (2010) 913 (https://doi.org/10.1260/0263-6174.28.10.913)

S. Thakur, S. Pandey, O.A. Arotiba, Carbohydr. Polym. 153 (2016) 34 (https://doi.org/10.1016/j.carbpol.2016.06.104)

K. Haraguchi, T. Takehisa, S. Fan, Macromolecules 25 (2002) 10162 (https://doi.org/10.1021/ma021301r)

F.Ö. Gökmen, N. Pekel-Bayramgil, Eur. Chem. Bull. 6 (2017) 514 (https://doi.org/10.17628/ecb.2017.6. 514-518)

N.A. Peppas, A.R. Khare, Adv. Drug Del. Rev. 11 (1993) 1 (https://doi.org/10.1016/0169-409X(93)90025-Y)

A. Singh, P.K. Sharma, V.K. Garg, G. Garg, Int. J. Pharm. Sci. Rev. Res. 4 (2010) 97

X. Sun, G. Zhang, Q. Shi, B. Tang, Z.J. Wu, Appl. Polym. Sci. 86 (2002) 3212 (https://doi.org/10.1002/1097-4628(20010404)80:1<115::AID-APP1079>3.0.CO;2-K)

N. Kashyap, N. Kumar, M. Kumar, Crit. Rev. Ther. Drug 22 (2005) 107 (https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v22.i2.10)

O.V. Ovchinnikov, A.V. Evtukhova, T.S. Kondratenko, M.S. Smirnov, V.Y. Khokhlov, O.V. Erina, Vib. Spectrosc. 86 (2016) 181 (https://doi.org/10.1016/j.vibspec.2016.06.016)




DOI: https://doi.org/10.2298/JSC190517114T

Copyright (c) 2019 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)