Copper(II) complex of (±)trans-1,2-cyclohexanediamine azo-linked Schiff base ligand encapsulated in nanocavity of zeolite–Y for the catalytic oxidation of olefins
Main Article Content
Abstract
A Schiff base ligand derived from 4-(benzeneazo) salicylaldehyde and (±)trans-1,2-cyclohexanediamine (H2L) and its corresponding Cu(II) complex (CuL) has been synthesized and characterized by FT-IR, UV-VIS and 1H NMR. The copper Schiff base complex encapsulated in the nanopores of zeolite-Y (CuL-Y) by flexible ligand method and its encapsulation have been ensured by different studies. The homogeneous and its corresponding heterogeneous catalysts have been used for oxidation of different alkenes with tert-butyl hydroperoxide. Under the optimized reaction conditions, the oxidation of cyclooctene, cyclohexene, styrene and norbornene catalyzed by CuL gave 89, 63, 46 and 13% conversion, respectively. These olefins were oxidized efficiently with 50, 96, 96 and 92% conversion in the presence of CuL-Y, respectively. Comparison of the catalytic behavior of CuL and CuL-Y showed the higher catalytic activity and selectivity of the heterogeneous catalyst with respect to the homogenous one.
Downloads
Metrics
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.