Aluminium/zirconium alloys obtained by Al underpotential deposition onto Zr from low temperature AlCl3+NaCl molten salts

Vesna S Cvetković, Niko Jovićević, Nataša M Vukićević, Jovan N Jovićević


Contrary to the widely accepted hypothesis that it is not possible, aluminium underpotential deposition (UPD) onto zirconium from a low temperature (200, 250 and 300 °C) equimolar chloroaluminate melt was recorded. Furthermore, it was shown that aluminium UPD facilitates alloy formation between the deposited aluminium monolayer and the zirconium substrate by interdiffusion. The aluminium/zirconium alloys formed at the temperatures substantially lower than those needed for thermal preparation of the same alloys were: Al3Zr2 and Al3Zr. Experimental techniques used were linear sweep voltammetry, potential step, scanning electron microscope, energy dispersive spectroscopy and X-ray diffraction were used for characterization of obtained electrode surfaces.


electrochemical metal deposition; chloroaluminate melt; solid state interdiffusion; intermetallics

Full Text:

PDF (1,747 kB)


M. Ueda, J. Solid State Electrochem. 21 (2017) 641 (

G. Garza-Elizondo, S. Alkahtani, A. Samuel, F. Samuel, Light Metals 2014, Springer International Publishing, Cham, 2016 (

T. Knych, M. Piwowarska, P. Uliasz, Arch. Metall. Mater. 56 (2011) 685 (

M. Pokova, M. Cieslar, J. Lacaze, The Influence of Pre-deformation on Minority Phases Precipitation in Modified AW-3003 Aluminium, in Met. 2012 Conf. Proc., Brno, Czech Republic, 2012, pp. 1149–1155

М. Pokova, M. Cieslar, P. Malek, Twin-Roll Cast Aluminium Alloys Processed By Ecap, in Met. 2013 Conf. Proc., Brno, Czech Republic, 2013

M. Ueda, T. Teshima, H. Matsushima, T. Ohtsuka, J. Solid State Electrochem. 19 (2015) 3485 (

T. Tsuda, C. L. Hussey, G. R. Stafford, O. Kongstein, J. Electrochem. Soc. 151 (2004) C447 (

E. Budevski, G. Staikov, W. J. Lorenz, Electrochemical Phase Formation and Growth: an introduction to the initial stages of metal deposition, Wiley-VCH Verlag GmbH, New York, 1996

G. R. Stafford, C. L. Hussey, Electrodeposition of transition metal-aluminium alloys from chloroaluminate molten salts, in R. C. Alkire, D. M. Kolb (Eds.), Adv. Electrochem. Sci. Eng., Wiley-VCH Verlag GmbH, New York, Weinheim, 2001, pp. 275–348

1O. A. Oveido, L. Reinaudi, S. G. Garcia, E. P. M. Levia, Underpotential Deposition: From fundamentals and theory to aplications at the nanoscale, Springer International Publishing Switzerland, 2016 (

D. M. Kolb, M. Przasnyski, H. Gerischer, Electroanal. Chemtstry Interfacial Electrochem. 54 (1974) 25

H. Gerischer, D. M. Kolb, M. Przasnyski, Surf. Sci. 43 (1974) 662

D. M. Kolb, H. Gerischer, Surf. Sci. 51 (1975) 323

V. D. Jović, J. N. Jovićević, J. Appl. Electrochem. 19 (1989) 275 (

B. Radovic, R. A. H. Edwards, V. S. Cvetković, J. N. Jovicevic, Kov. Mater. 48 (2010) 55 (

B. S. Radović, V. S. Cvetković, R. A. H. Edwards, J. N. Jovićević, Kov. Mater. 48 (2010) 159 (

B. S. Radović, V. S. Cvetković, R. A. H. Edwards, J. N. Jovićević, Int. J. Mater. Res. 102 (2011) 59 (

N. Jovićević, V. S. Cvetković, Ž. J. Kamberović, J. N. Jovićević, Int. J. Electrochem. Sci. 7 (2012) 10380

N. Jovićević, V. S. Cvetković, Ž. J. Kamberović, J. N. Jovićević, Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 44 (2013) 106 (

N. Jovićević, V. S. Cvetković, Ž. Kamberović, T. S. Barudžija, Int. J. Electrochem. Sci. 10 (2015) 8959

V. S. Cvetković, L. Bjelica, N. M. Vukićević, J. N. Jovićević, Chem. Ind. Chem. Eng. Q. 21 (2015) 527 (

M. Kawase, Y. Ito, J. Appl. Electrochem. 33 (2003) 785 (

S. Shiomi, M. Miyake, T. Hirato, J. Electrochem. Soc. 159 (2012) D225 (

V. S. Cvetković, N. Jovićević, N. M. Vukićević, Aluminium Underpotential Deposition onto Zirconium, in N. Štrabac, I. Marković, L. Balanović (Eds.), 49th Int. Oct. Conf. Min. Metall., University of Belgrade, Technical Faculty in Bor, Bor, Serbia, 2017, pp. 241–244

J. Murray, A. Peruzzi, J. P. Abriata, J. Phase Equilibria 13 (1992) 277 (

M. Alatalo, M. Weinert, R. E. Watson, Phys. Rev. B 57 (1998) R2009

A. Stakënas, L. Simanavièius, Chem. 12 (2001) 189

G. V. Kidson, G. D. Miller, J. Nucl. Mater. 12 (1964) 61 (

K. E. Knipling, D. C. Dunand, D. N. Seidman, Acta Mater. 56 (2008) 114 (

H. J. Fecht, G. Han, Z. Fu, W. L. Johnson, J. Appl. Phys. 67 (1990) 1744 (

M. N. Rittner, J. R. Weertman, J. A. Eastman, Acta Mater. 44 (1996) 1271 (

J. Ho, K. Lin, J. Appl. Phys. 75 (1994) 2434 (

I. L. Soroka, J. Vegelius, P. T. Korelis, A. Fallberg, S. M. Butorin, B. Hjörvarsson, J. Nucl. Mater. 401 (2010) 38 (

J. Vegelius, I. L. Soroka, P. T. Korelis, B. Hjörvarsson, S. M. Butorin, J. Phys. Condens. Matter 23 (2011) 265503 (

Q. Zhong, Z. Zhang, J. Zhu, Z. Wang, P. Jonnard, K. Guen, Y. Yuan, J.-M. André, H. Zhou, T. Huo, Appl. Phys. A 109 (2012) 133 (

Q. Zhong, Z. Zhang, S. Ma, R. Qi, J. Li, Z. Wang, P. Jonnard, K. Le Guen, J.-M. André, Appl. Surf. Sci. 279 (2013) 334 (


Copyright (c) 2019 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)