Infrared spectroelectrochemical configurations for in situ measurements

Nebojša Marinković, Radosalav Adžić

Abstract


The choice of infrared (IR) spectroelectrochemical configurations and accessories depends on the type of reaction investigated.  Mostly used system is Otto configuration where the electrolyte is squeezed between the electrode and the internal reflection element (IRE). However, another system with the film electrode deposited directly onto the flat side of the IRE (Kretschmann configuration) gains popularity, not only because of the increase in sensitivity, but also as it allows electrochemical reactions involving gas evolution. By using Fresnel equations for three-phase stratified medium we show that the strength of mean-square electric field (MSEF) at the metal/solution interface associated with the dissipation of energy onto the adsorbed species in Otto configuration is rather flexible in the choice of optimal angle of incidence of the IR radiation and the thickness of the water layer. On the other hand, Kretschmann configuration is very sensitive to the parameters of the optical system, so the calculations of the MSEF are necessary to identify the optimal angle of incidence and the thickness of the metal layer that give maximal enhancement in the mid-IR region where the bands of interest occur.

g.


Keywords


Kretschmann configuration, Otto configuration, IRRAS, electric field, Fresnel equationsons

Full Text:

PDF (1,370 kB)

References


P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry, 2nd edition. J. Wiley, New York (2007). (ISBN-13: 978-0471194040)

F. M. Mirabella, Internal Reflection Spectroscopy: Theory and Applications. Marcel Dekker, New York (1993)

N. J. Harrick Internal Reflection Spectroscopy, Interscience Publishers, J. Wiley and Sons, New York, 1967.

R. G. Greenler, J. Chem. Phys. 44(1966) 310 ( https://doi.org/10.1063/1.1726462 )

R. G. Greenler, J. Chem. Phys. 50 (1969) 1963 (https://doi.org/10.1063/1.1671315)

R. G. Greenler, J. Vac. Sci. Technol. 12 (1975) 1410 (https://doi.org/10.1116/1.568552)

A. Bewick, K. Kunimatsu, B. S. Pons, J. W. Russell, J. Electroanal. Chem. 160 (1984) 47 (https://doi.org/10.1016/S0022-0728(84)80114-X)

A. Antonio Berna, A. Rodes, J. M. Feliu In-situ FTIR Studies on the Acid–Base Equilibria of Adsorbed Species on Well-Defined Metal Electrode Surfaces, in In-situ Spectroscopic Studies of Adsorption at the Electrode and Electrocatalysis, S.-G. Sun, P. A. Christensen, A. Wieckowski (Eds.) Elsevier, 2007, 1-32

J.-M. Leger, F. Hahn, Contribution of In-situ Infrared Reflectance Spectroscopy in the Study of Nanostructured Fuel Cell Electrodes in In-situ Spectroscopic Studies of Adsorption at the Electrode and Electrocatalysis, S.-G. Sun, P. A. Christensen, A. Wieckowski (Eds.), Elsevier, 2007, 63-98

C. Korzeniewski Recent Advances in in-situ Infrared Spectroscopy and Applications in Single-crystal Electrochemistry and Electrocatalysis In-situ Spectroscopic Studies of Adsorption at the Electrode and Electrocatalysis, S.-G. Sun, P.A. Christensen, A. Wieckowski (Eds.), Elsevier, 2007, 179-208

A. Otto, Phys. Stat. Sol. 26 (1968) K99-K101 (https://doi.org/10.1002/pssb.19680260246)

P. W. Faguy and N.S. Marinkovic, Appl. Spectrosc. 50 (1996) 394 (https://doi.org/10.1366/0003702963906302)

M. Li and N. Marinkovic (2014). In situ Infrared Spectroelectrochemistry: Principles and Applications in: Infrared Spectroscopy: Theory, Developments and Applications, Daniel Cozzolino (Ed.), Nova Science Publishers, Chapter 14, p. 307-332. (ISBN: 978-1-62948-521-8)

J. W. Russel, J. Overend, K. Scanlon, M. Severson, A. Bewick, J. Phys. Chem. 86 (1982) 3066 (https://doi.org/10.1021/j100213a005)

S. Pons, J. Electroanal. Chem. 150 (1983) 495 (https://doi.org/10.1016/S0022-0728(83)80229-0)

D. S. Corrigan, L. W. H. Leung, M.J. Weaver, Anal. Chem. 59 (1987) 2252 (https://doi.org/10.1021/ac00145a009)

H. Seki, K. Kunimatsu, W. G. Golden, Appl. Spectrosc. 39 (1985) 437 (https://doi.org/10.1366/0003702854248593)

E. Kretschmann, H. Reather, Z. Naturf. 23 (1968) 2135 (https://doi.org/10.1515/zna-1968-1247)

N. Marinkovic, Zastita Materijala 59 (2018) 273 (10.5937/ZasMat1802273M)

P. W. Hansen, J. Opt. Soc. Am. 58 (1968) 380 (https://doi.org/10.1364/JOSA.58.000380)

P. W. Hansen, In P. Delahay, C. W. Tobias (Eds.), Advances in Electrochemistry and Electrochemical Engineering, vol. 9. John Wiley and Sons, New York (1973), pp.1-60.

On-line program Wolfram Alpha: www.wolframalpha.com (accessed 8/16/19)

Refractive indices for ZnSe, water and Pt are given in: https://refractiveindex.info/?shelf=main&book=ZnSe&page=Querry, http://refractiveindex.info/?shelf=main&book=H2O&page=Hale https://refractiveindex.info/?shelf=main&book=Pt&page=Windt( accessed 8/16/19)

Permeability in Wikipedia: https://en.wikipedia.org/wiki/Permeability_(electromagnetism) (accessed 8/16/19)

N. Marinkovic, M. Li and R. R. Adzic, Top. Curr. Chem. 377 (2019) 11 (http://link.springer.com/10.1007/s41061-019-0236-5)

See Lensmaker’s equation for plano-convex lens (R2 =  and d = 0): https://en.wikipedia.org/wiki/Lens#CITEREFHecht1987 (accessed 8/16/19)

M. Osawa, M. Kuramitsu, A. Hatta, W. Suetaka, Surf. Sci. 175 (1986) L787 (https://doi.org/10.1016/0039-6028(86)90001-4)

M. Osawa In-situ Surface-enhanced Infrared Spectroscopy of the Electrode/Solution Interface in Advances in Electrochemical Science and Engineering. Diffraction and Spectroscopic Methods in Electrochemistry, R. C. Alkire, D. M. Kolb, J. Lipkowski, P. N. Ross (Eds.), Wiley - VCH, vol. 9, 2009, 269-314. (ISBN-13: 9783527313174)

R. R. Adzic, J. Serb. Chem. Soc. (ex. Bulletin de la Societe Chimique, (Beograd)) 39 (1974) 661 (in Serbian).




DOI: https://doi.org/10.2298/JSC190828103M

Copyright (c) 2019 Journal of the Serbian Chemical Society

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)