Infrared spectroelectrochemical configurations for in situ measurements

Nebojša Marinković, Radosalav Adžić

Abstract


The choice of infrared (IR) spectroelectrochemical configurations and accessories depends on the type of reaction investigated. The mostly used system is Otto configuration where the electrolyte is squeezed between the electrode and the internal reflection element (IRE). However, another system with the film electrode deposited directly onto the flat side of the IRE (Kretsch­mann configuration) gains popularity, not only because of the increase in sen­sitivity, but also as it allows electrochemical reactions involving gas evolution. By the use of Fresnel equations for three-phase stratified medium we show that the strength of mean-square electric field (MSEF) at the metal/solution inter­face, associated with the dissipation of energy onto the adsorbed species in Otto configuration, is rather flexible in the choice of the optimal angle of inci­dence of the IR radiation and the thickness of the water layer. On the other hand, Kretschmann configuration is very sensitive to the parameters of the optical system, so the calculations of the MSEF are necessary to identify the optimal angle of incidence and the thickness of the metal layer that give max­i­mal enhancement in the mid-IR region where the bands of interest occur.


Keywords


Kretschmann configuration; Otto configuration; IRRAS; electric field; Fresnel equations

Full Text:

PDF (3,511 kB)

References


P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry, 2nd ed., J. Wiley, New York, 2007 (ISBN-13: 978-0471194040)

F. M. Mirabella, Internal Reflection Spectroscopy: Theory and Applications, Marcel Dekker, New York, 1993

N. J. Harrick Internal Reflection Spectroscopy, Interscience Publishers, J. Wiley and Sons, New York, 1967

R. G. Greenler, J. Chem. Phys. 44(1966) 310 ( https://doi.org/10.1063/1.1726462 )

R. G. Greenler, J. Chem. Phys. 50 (1969) 1963 (https://doi.org/10.1063/1.1671315)

R. G. Greenler, J. Vac. Sci. Technol. 12 (1975) 1410 (https://doi.org/10.1116/1.568552)

A. Bewick, K. Kunimatsu, B. S. Pons, J. W. Russell, J. Electroanal. Chem. 160 (1984) 47 (https://doi.org/10.1016/S0022-0728(84)80114-X)

A. Antonio Berna, A. Rodes, J. M. Feliu, in In-situ Spectroscopic Studies of Adsorption at the Electrode and Electrocatalysis, S.-G. Sun, P. A. Christensen, A. Wieckowski, Eds., Elsevier, Amsterdam, 2007, pp. 1–32

J.-M. Leger, F. Hahn, in In-situ Spectroscopic Studies of Adsorption at the Electrode and Electrocatalysis, S.-G. Sun, P. A. Christensen, A. Wieckowski, Eds., Elsevier, Amsterdam, 2007, pp. 63–98

C. Korzeniewski, in Single-crystal Electrochemistry and Electrocatalysis In-situ Spectroscopic Studies of Adsorption at the Electrode and Electrocatalysis, S.-G. Sun, P.A. Christensen, A. Wieckowski, Eds., Elsevier, Amsterdam, 2007, pp. 179–208

A. Otto, Phys. Stat. Sol. 26 (1968) K99 (https://doi.org/10.1002/pssb.19680260246)

P. W. Faguy and N.S. Marinkovic, Appl. Spectrosc. 50 (1996) 394 (https://doi.org/10.1366/0003702963906302)

M. Li, N. Marinkovic, in Infrared Spectroscopy: Theory, Developments and Applications, D. Cozzolino, Ed., Nova Science Publishers, New York, Ch. 14, pp. 307–332 (ISBN: 978-1-62948-521-8)

J. W. Russel, J. Overend, K. Scanlon, M. Severson, A. Bewick, J. Phys. Chem. 86 (1982) 3066 (https://doi.org/10.1021/j100213a005)

S. Pons, J. Electroanal. Chem. 150 (1983) 495 (https://doi.org/10.1016/S0022-0728(83)80229-0)

D. S. Corrigan, L. W. H. Leung, M.J. Weaver, Anal. Chem. 59 (1987) 2252 (https://doi.org/10.1021/ac00145a009)

H. Seki, K. Kunimatsu, W. G. Golden, Appl. Spectrosc. 39 (1985) 437 (https://doi.org/10.1366/0003702854248593)

E. Kretschmann, H. Reather, Z. Naturf. 23 (1968) 2135 (https://doi.org/10.1515/zna-1968-1247)

N. Marinkovic, Zaštita Materijala 59 (2018) 273 (10.5937/ZasMat1802273M)

P. W. Hansen, J. Opt. Soc. Am. 58 (1968) 380 (https://doi.org/10.1364/JOSA.58.000380)

P. W. Hansen, in Advances in Electrochemistry and Electrochemical Engineering, Vol. 9, P. Delahay, C. W. Tobias, Eds., John Wiley and Sons, New York, 1973, pp.1–60

On-line program Wolfram Alpha, www.wolframalpha.com (accessed 8/16/19)

Refractive indices for ZnSe, water and Pt are given at https://refractiveindex.info/?shelf=main&book=ZnSe&page=Querry, http://refractiveindex.info/?shelf=main&book=H2O&page=Hale https://refractiveindex.info/?shelf=main&book=Pt&page=Windt( accessed 8/16/19)

Permeability in Wikipedia, https://en.wikipedia.org/wiki/Permeability_(electromagnetism) (accessed 8/16/19)

N. Marinkovic, M. Li and R. R. Adzic, Top. Curr. Chem. 377 (2019) 11 (http://link.springer.com/10.1007/s41061-019-0236-5)

See Lensmaker’s equation, for plano-convex lens (R2 =  and d = 0), https://en.wikipedia.org/wiki/Lens#CITEREFHecht1987 (accessed 8/16/19)

M. Osawa, M. Kuramitsu, A. Hatta, W. Suetaka, Surf. Sci. 175 (1986) L787 (https://doi.org/10.1016/0039-6028(86)90001-4)

M. Osawa in Advances in Electrochemical Science and Engineering. Diffraction and Spectroscopic Methods in Electrochemistry, Vol. 9, R. C. Alkire, D. M. Kolb, J. Lipkowski, P. N. Ross, Eds., Wiley-VCH, Berlin, 2009, pp. 269–314 (ISBN-13: 9783527313174)

R. R. Adzic, J. Serb. Chem. Soc. (ex. Bulletin de la Societe Chimique, (Beograd)) 39 (1974) 661 (in Serbian).




DOI: https://doi.org/10.2298/JSC190828103M

Copyright (c) 2019 Journal of the Serbian Chemical Society

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)