Infrared spectroelectrochemical configurations for in situ measurements
Main Article Content
Abstract
The choice of infrared (IR) spectroelectrochemical configurations and accessories depends on the type of reaction investigated. The mostly used system is Otto configuration where the electrolyte is squeezed between the electrode and the internal reflection element (IRE). However, another system with the film electrode deposited directly onto the flat side of the IRE (Kretschmann configuration) gains popularity, not only because of the increase in sensitivity, but also as it allows electrochemical reactions involving gas evolution. By the use of Fresnel equations for three-phase stratified medium we show that the strength of mean-square electric field (MSEF) at the metal/solution interface, associated with the dissipation of energy onto the adsorbed species in Otto configuration, is rather flexible in the choice of the optimal angle of incidence of the IR radiation and the thickness of the water layer. On the other hand, Kretschmann configuration is very sensitive to the parameters of the optical system, so the calculations of the MSEF are necessary to identify the optimal angle of incidence and the thickness of the metal layer that give maximal enhancement in the mid-IR region where the bands of interest occur.
Downloads
Metrics
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry, 2nd ed., J. Wiley, New York, 2007 (ISBN-13: 978-0471194040)
F. M. Mirabella, Internal Reflection Spectroscopy: Theory and Applications, Marcel Dekker, New York, 1993
N. J. Harrick Internal Reflection Spectroscopy, Interscience Publishers, J. Wiley and Sons, New York, 1967
R. G. Greenler, J. Chem. Phys. 44(1966) 310 ( https://doi.org/10.1063/1.1726462 )
R. G. Greenler, J. Chem. Phys. 50 (1969) 1963 (https://doi.org/10.1063/1.1671315)
R. G. Greenler, J. Vac. Sci. Technol. 12 (1975) 1410 (https://doi.org/10.1116/1.568552)
A. Bewick, K. Kunimatsu, B. S. Pons, J. W. Russell, J. Electroanal. Chem. 160 (1984) 47 (https://doi.org/10.1016/S0022-0728(84)80114-X)
A. Antonio Berna, A. Rodes, J. M. Feliu, in In-situ Spectroscopic Studies of Adsorption at the Electrode and Electrocatalysis, S.-G. Sun, P. A. Christensen, A. Wieckowski, Eds., Elsevier, Amsterdam, 2007, pp. 1–32
J.-M. Leger, F. Hahn, in In-situ Spectroscopic Studies of Adsorption at the Electrode and Electrocatalysis, S.-G. Sun, P. A. Christensen, A. Wieckowski, Eds., Elsevier, Amsterdam, 2007, pp. 63–98
C. Korzeniewski, in Single-crystal Electrochemistry and Electrocatalysis In-situ Spectroscopic Studies of Adsorption at the Electrode and Electrocatalysis, S.-G. Sun, P.A. Christensen, A. Wieckowski, Eds., Elsevier, Amsterdam, 2007, pp. 179–208
A. Otto, Phys. Stat. Sol. 26 (1968) K99 (https://doi.org/10.1002/pssb.19680260246)
P. W. Faguy and N.S. Marinkovic, Appl. Spectrosc. 50 (1996) 394 (https://doi.org/10.1366/0003702963906302)
M. Li, N. Marinkovic, in Infrared Spectroscopy: Theory, Developments and Applications, D. Cozzolino, Ed., Nova Science Publishers, New York, Ch. 14, pp. 307–332 (ISBN: 978-1-62948-521-8)
J. W. Russel, J. Overend, K. Scanlon, M. Severson, A. Bewick, J. Phys. Chem. 86 (1982) 3066 (https://doi.org/10.1021/j100213a005)
S. Pons, J. Electroanal. Chem. 150 (1983) 495 (https://doi.org/10.1016/S0022-0728(83)80229-0)
D. S. Corrigan, L. W. H. Leung, M.J. Weaver, Anal. Chem. 59 (1987) 2252 (https://doi.org/10.1021/ac00145a009)
H. Seki, K. Kunimatsu, W. G. Golden, Appl. Spectrosc. 39 (1985) 437 (https://doi.org/10.1366/0003702854248593)
E. Kretschmann, H. Reather, Z. Naturf. 23 (1968) 2135 (https://doi.org/10.1515/zna-1968-1247)
N. Marinkovic, Zaštita Materijala 59 (2018) 273 (10.5937/ZasMat1802273M)
P. W. Hansen, J. Opt. Soc. Am. 58 (1968) 380 (https://doi.org/10.1364/JOSA.58.000380)
P. W. Hansen, in Advances in Electrochemistry and Electrochemical Engineering, Vol. 9, P. Delahay, C. W. Tobias, Eds., John Wiley and Sons, New York, 1973, pp.1–60
On-line program Wolfram Alpha, www.wolframalpha.com (accessed 8/16/19)
Refractive indices for ZnSe, water and Pt are given at https://refractiveindex.info/?shelf=main&book=ZnSe&page=Querry, http://refractiveindex.info/?shelf=main&book=H2O&page=Hale https://refractiveindex.info/?shelf=main&book=Pt&page=Windt( accessed 8/16/19)
Permeability in Wikipedia, https://en.wikipedia.org/wiki/Permeability_(electromagnetism) (accessed 8/16/19)
N. Marinkovic, M. Li and R. R. Adzic, Top. Curr. Chem. 377 (2019) 11 (http://link.springer.com/10.1007/s41061-019-0236-5)
See Lensmakers equation, for plano-convex lens (R2 = and d = 0), https://en.wikipedia.org/wiki/Lens#CITEREFHecht1987 (accessed 8/16/19)
M. Osawa, M. Kuramitsu, A. Hatta, W. Suetaka, Surf. Sci. 175 (1986) L787 (https://doi.org/10.1016/0039-6028(86)90001-4)
M. Osawa in Advances in Electrochemical Science and Engineering. Diffraction and Spectroscopic Methods in Electrochemistry, Vol. 9, R. C. Alkire, D. M. Kolb, J. Lipkowski, P. N. Ross, Eds., Wiley-VCH, Berlin, 2009, pp. 269–314 (ISBN-13: 9783527313174)
R. R. Adzic, J. Serb. Chem. Soc. (ex. Bulletin de la Societe Chimique, (Beograd)) 39 (1974) 661 (in Serbian).