Understanding the regio- and diastereoselective synthesis of a potent antinociceptive isoxazolidine from C-(pyridin-3-yl)-N-phenyl nitrone in the light of molecular electron density theoryry

Nivedita Acharjee

Abstract


[3+2] cycloaddition reaction of C-(pyridin-3-yl)-N-phenyl nitrone and 2-propen-1-ol yields stereochemically defined potent antinociceptive isoxazolidine derivative. Computational Quantum calculations (CQC) are performed for this synthesis to predict the polar character, mechanism and selectivity within the framework of molecular electron density theory (MEDT). Topological analysis of the Electron Localization Function (ELF) classifies the nitrone as a zwitter-ionic(zw-) type three atom component (TAC) showing absence of any pseudoradical or carbenoid centre. Four reaction channels corresponding to the possible regio- and stereoselective pathways are studied at DFT/B3LYP/6-311G(d,p) level of theory. The reaction follows one-step mechanism with asynchronous transition states and the computed activation energies agree well with experimental data. The reaction can be differentiated into nine ELF topological phases, with faster C-C bond formation. Global electron density theory (GEDT) at the favoured transition state and Conceptual Density Functional Theory (CDFT) indices at the ground state of the reagents indicate non-polar character. Non-covalent interactions are predicted by Atoms-in-molecules (AIM) analysis and non-covalent interaction (NCI) plots at the transition states.


Keywords


MEDT, transition state, electron localization function, NCI

Full Text:

PDF (2,097 kB)

References


M. A. Chiacchio, S. V. Giofrè, R. Romeo, G. Romeo, U. Chiacchio, Curr. Org. Synth. 13 (2016) 726 (https://doi.org/10.2174/1570179412666150914195807)

R. C. F. Jones, The Chemistry of Heterocyclic Compounds Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products, John Wiley & Sons, New York 2002, p. 1-81 (https://doi.org/10.1002/0471221902.ch1)

L. R. Domingo, Molecules 21 (2016) 1319 (https://doi.org/10.3390/molecules21101319)

M. R. Gutiérrez, L. R. Domingo, Eur. J. Org. Chem.2 (2019) 267 (https://doi.org/10.1002/ejoc.201800916)

L. R. Domingo, M. R. Gutiérrez, N. Acharjee, Molecules.24 (2019) 832 (https://doi.org/10.3390/molecules24050832)

L. R. Domingo, M. R. Gutiérrez, P. Pérez, J. Org. Chem. 83 (2018) 2182 (https://doi.org/10.1021/acs.joc.7b03093)

D. Hallooman, D. Cudian, M. R. Gutiérrez, L. Rhyman, I. A. Alswaidan, M. I. Elzagheid, L. R. Domingo, P. Ramasami, ChemistrySelect. 2 (2017)9736 (https://doi.org/10.1002/slct.201702136)

L. R. Domingo, M. R. Gutiérrez, P. Pérez,Molecules.23 (2018) 1913 (https://doi.org/10.3390/molecules23081913)

A. I. Adjieufack, I. M. Ndassa, J. K. Mbadcam, M. R. Gutiérrez, L. R. Domingo, Theor. Chem. Acc. 136 (2017) 129 (https://doi.org/10.1007/s00214-017-2161-4)

A. Kącka-Zych, R. Jasiński, Theor. Chem. Acc.138 (2019) 81 (https://doi.org/10.1007/s00214-019-2467-5)

A. Kącka-Zych, Molecules 24 (2019) 462 (https://doi.org/10.3390/molecules24030462)

A. D. Becke, K. E. Edgecombe, J. Chem. Phys. 92 (1990) 5397 (https://doi.org/10.1063/1.458517)

L. R. Domingo, M. R. Gutiérrez, P. Pérez, Molecules 21 (2016) 748 (https://doi.org/10.3390/molecules21060748)

B. Silvi, A. Savin, Nature. 371 (1994) 683 (https://www.nature.com/articles/371683a0)

L. R. Domingo, M. R. Gutiérrez, P. Pérez, Tetrahedron 72 (2016) 1524 (https://doi.org/10.1016/j.tet.2016.01.061)

L. R. Domingo, M. R. Gutiérrez, Molecules 22 (2017) 750 (https://doi.org/10.3390/molecules22050750)

L. R. Domingo, N. Acharjee, Chemistry Select. 3 (2018) 8373 (https://doi.org/10.1002/slct.201801528)

L. R. Domingo, RSC Adv. 4 (2014) 32415 (https://doi.org/10.1039/C4RA04280H)

A. E. Reed, R. B. Weinstock, F. Weinhold, J. Chem. Phys. 83 (1985) 735 (https://doi.org/10.1063/1.449486)

A. E. Reed, L. A.Curtiss, F. Weinhold, Chem. Rev. 88 (1985) 899 (https://doi.org/10.1021/cr00088a005)

L. R. Domingo, M. R. Gutiérrez, P. Pérez, Tetrahedron 73 (2017) 1718 (https://doi.org/10.1016/j.tet.2017.02.012)

C. González, H. B. Schlegel, J. Phys. Chem. 94 (1990)5523 (https://doi.org/10.1021/j100377a021)

J. Andrés, S. Berski, L. R. Domingo, V. Polo, B Silvi, Curr. Org. Chem. 15 (2011) 3566 (https://doi.org/10.2174/138527211797636156)

J. Andrés, S. Berski, B Silvi. Chem. Commun. 52 (2016) 8183 (https://doi.org/10.1039/C5CC09816E)

R. F. W. Bader, In Atoms in Molecules: A Quantum Theory, Oxford: Clarendon Press, New York, 1990

R. F. W. Bader, H. Essén, J. Chem. Phys. 80 (1984) 1943 (https://doi.org/10.1063/1.446956)

J. C-. García, E. R. Johnson, S. Keinan, R. Chaudret, J. P. Piquemal, D. N. Beratan. W. Yang, J. Chem. Theory. Comput. 73 (2011) 625 (https://doi.org/10.1021/ct100641a)

N. Sethi, R. Bhatti, M. P. S. Ishar, Res. Pharm. Sci. 9 (2014) 59 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4292182)

A. D. Becke, Phys. Rev. A38(1988) 3098 (https://doi.org/10.1103/PhysRevA.38.3098)

C. Lee, W. Yang, R. G. Parr, Phys. Rev. B.37 (1988) 785 (https://doi.org/10.1103/PhysRevB.37.785)

P. Geerlings, F. De. Proft, W. Langenaeker, Chem. Rev. 103 (2003) 1793 (https://doi.org/10.1021/cr990029p)

R. G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules, Oxford University Press, New York, 1989.

R. G. Parr, R. G. Pearson, J. Am. Chem. Soc. 105 (1983) 7512 (https://doi.org/10.1021/ja00364a005)

L. R. Domingo, M. J. Aurell, P. Pérez, R. Contreras, Tetrahedron 58 (2002) 4417 (https://doi.org/10.1016/S0040-4020(02)00410-6)

L. R. Domingo, P. Pérez, Org. Biomol. Chem. 9 (2011) 7168 (https://doi.org/10.1039/C1OB05856H)

J. Tomasi, M. Persico, Chem. Rev. 94 (1994) 2027 (https://doi.org/10.1021/cr00031a013)

M. Cossi, V. Barone, R. Cammi, J. Tomasi, Chem. Phys. Lett. 255 (1996) 327 (https://doi.org/10.1016/0009-2614(96)00349-1)

Gaussian 03, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, et al. Gaussian, Inc., Wallingford CT, 2004.

T. Lu, F. Chen, J. Comp. Chem. 33 (2012) 580 (https://doi.org/10.1002/jcc.22885)

W. Humphrey, A. Dalke, K. Schulten, J. Molec. Graphics. 14 (1996) 33 (https://doi.org/10.1016/0263-7855(96)00018-5)

E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, T. E. Ferrin, J. Comput. Chem. 25 (2004) 1605 (https://doi.org/10.1002/jcc.20084)

E. Dresler, A.Kącka-Zych, M. Kwiatkowska, R. Jasiński, J. Mol. Model. 24 (2018) 329 (https://doi.org/10.1007/s00894-018-3861-y)

R. Jasiński,Comput. Theor. Chem. 1125 (2018) 77 (https://doi.org/10.1016/j.comptc.2018.01.009)

R. Jasiński, Tetrahedron Lett. 56 (2015) 532 (https://doi.org/10.1016/j.tetlet.2014.12.007)

R. Jasiński, M. Żmigrodzka, E. Dresler, K. Kula, J. Heterocyclic. Chem. 54 (2017) 3314 (https://doi.org/10.1002/jhet.2951)

R. Jasiński, K. Mróz, A. Kącka, J. Heterocyclic. Chem. 53 (2016) 1424 (https://doi.org/10.1002/jhet.2442)




DOI: https://doi.org/10.2298/JSC190914136A

Copyright (c) 2019 Journal of the Serbian Chemical Society

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)