Preparation of FePO4x2H2O from LiFePO4 mixed with LiNixCoyMn1–x–yO2 waste material
Main Article Content
Abstract
A method for preparing battery grade FePO4×2H2O from LiFePO4 and LiNixCoyMn1-x-yO2 mixed waste is proposed. The optimum leaching conditions included: temperature of 50 °C, 3:1 liquid–solid mass ratio, 3.6 HCl/FePO4×2H2O mole ratio, 0.75 H2O2/FePO4×2H2O mole ratio, and 2 h reaction time. The solution obtained from the leaching waste material was diluted to a 1.0 M Fe concentration, then transferred to an 1 L beaker, where temperature, pH, complexing agent, ammonia addition rate and feeding mode were studied in order to determine their effects on the precipitation, particle size and morphology of FePO4×2H2O. High precipitation rate of Fe with low percentages of Al, Ni, Co, Mn in the FePO4×2H2O is achievable when precipitation is performed at a temperature of 85 °C, pH of 2.0, and 20 g L-1 complexing agent. Furthermore, it was observed that a slow addition of ammonia and a flow feeding method contributed to the production of FePO4×2H2O, with small particle sizes and a flake morphology.
Downloads
Metrics
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
C. W. Sun, R. Shreyas, J. B. Goodenough, F. Zhou, J. Am. Chem. Soc. 133 (2011) 2132 (https://doi.org/10.1021/ja1110464)
S. P. Wang, H. X. Yang, L. J. Feng, S. M. Sun, J. X. Guo, Y. Z. Yang, H. Y. Wei, J. Power Sources 233 (2013) 43 (https://doi.org/10.1016/j.jpowsour.2013.01.124)
Y. X. Gu, W. M. Liu, W. Lei, G. C. Li, Y. Yu, Crystengcomm 15 (2013) 4865 (http://doi.org/10.1039/C3CE00072A)
Q. Wang, S. X. Deng, H. Wang, M. Xie, J. B. Liu, H. Yan, J. Alloys Compd. 553 (2013) 69 (https://doi.org/10.1016/j.jallcom.2012.11.041)
F. Y. Cheng, J. Liang, Z. L. Tao, J. Chen, Adv. Mater. 23 (2011) 1695 (https://doi.org/10.1002/adma.201003587)
B. Scrosati, J. Garche, J. Power Sources 195 (2009) 2419 (https://doi.org/10.1016/j.jpowsour.2009.11.048)
B. Scrosati, J. Hassoun, Y. K. Sun, Energy Environ. Sci. 4 (2011) 3287 (https://doi.org/10.1039/C1EE01388B)
Y. Zhang, Q. Y. Huo, P. P. Du, L. Z. Wang, A. Q. Zhang, Y. H. Song, Y. Lv, G. Y. Li, Synth. Metals 162 (2012) 1315 (https://doi.org/10.1016/j.synthmet.2012.04.025)
J. J. Wang, X. L. Sun, Energy Environ. Sci. 5 (2012) 5163 (https://doi.org/10.1039/C1EE01263K)
X. Wang, G. Gaustad, C. W. Babbitt, K. Richa, Resour. Conserv. Recycl. 83 (2014) 53 (https://doi.org/10.1016/j.resconrec.2013.11.009)
J. Chen, Y. C. Zou, F. Zhang, Y. C. Zhang, F. F. Guo, G. D. Li, J. Alloys Compd. 563 (2013) 264 (https://doi.org/10.1016/j.jallcom.2013.02.131)
G. Q. Cai, K. Y. Fung, K. M. Ng, C. Wibowo, Ind. Eng. Chem. Res. 53 (2014) 18245 (https://doi.org/10.1021/ie5025326)
L. Han, D. L. He, A. J. Liu, D. M. Ma, Chin. J. Power Sources 38 (2014) 548 (https://doi.org/CNKI:SUN:DYJS.0.2014-03-051)
S. Barusseau, B. Beder, M. Broussely, F. Perton, J. Power Sources 54 (1995) 296 (https://doi.org/10.1016/0378-7753(94)02087-J)
P. G. Bruce, S. Bruno, T. Jean-Marie, Angew. Chem. Int. Ed. 47 (2008) 2930 (https://doi.org/10.1002/anie.200702505)
X. T. Jiang, P. Wang, L. H. Li, J. Yu, Y. X. Yin, F. Hou, Mater. Sci. Forum 943 (2019) 141 (https://doi.org/10.4028/www.scientific.net/MSF.943.141)
N. Omar, M. A. Monem, Y. Firouz, J. Salminen, J. Smekens, O. Hegazy. H. Gaulous, G. Mulder, P. V. D. Bossche, T. Coosemans, J. V. Mierlo, Appl. Energy 113 (2013) 1575 (https://doi.org/10.1016/j.apenergy.2013.09.003)
L. X. Yuan, Z. H. Wang, W. X. Zhang, X. L. Hu, J. T. Chen, Y. H. Huang, J. B. Goodenough, Energy Environ. Sci. 4 (2010) 269 (https://doi.org/10.1039/c0ee00029a)
X. L. Li, J. Zhang, D. W. Song, J. S. Song, L.Q. Zhang, J. Power Sources 345 (2017) 78 (https://doi.org/10.1016/j.jpowsour.2017.01.118)
H. Tanaka, A. Yasukawa, K. Kandori, T. Ishikawa, Colloids Surfaces, A 204 (2002) 251 (https://doi.org/10.1016/S0927-7757(02)00005-5)
N. K. Mal, A. Bhaumik, M. Matsukata, M Fujiwara. Ind. Eng. Chem. Res. 45 (2006) 7748 (https://doi.org/10.1021/ie060609u)
D. C. Bian, Y. H. Sun, S. Li, Y. Tian, Z. H. Yang, X. M. Fan, W. X. Zhang, Electrochim. Acta 190 (2015) 134 (https://doi.org/10.1016/j.electacta.2015.12.114)
Y. X. Yang, X. H. Zheng, H. B. Cao, C. L. Zhao, X. Lin, P. G. Ning, Y. Zhang, W. Jin, Z. Sun, ACS Sustain. Chem. Eng. 5 (2017) 9972 (https://doi.org/10.1021/acssuschemeng.7b01914)
B. Dong, G. Li, X. G. Yang, L. M. Chen, G. Z. Chen, Ultrason. Sonochem. 42 (2018) 452 (https://doi.org/10.1016/j.ultsonch.2017.12.008)
W. P. He, L. P. Xue, B. Gorczyca, J. Nan, Z. Shi, Sep. Purif. Technol. 190 (2018) 228 (https://doi.org/10.1016/j.seppur.2017.08.063)
A. Tamburini, G. Gagliano, G. Micale, A. Brucato, F. Scargiali, M. Ciofalo, Chem. Eng. Sci. 192 (2018) 161 (https://doi.org/10.1016/j.ces.2018.07.023)
D. M. Zheng, H. Z. Pan, L. P. Wu, J. C. Chen, J. H. Peng, Chin. J. Power Sources 39 (2015) 58 (https://doi.org/10.3969/j.issn.1002-087X.2015.01.017)
Z. M. Ma, R. G. Xiao, X. Liao, X. Ke, Mater. Rev. 32 (2018) 3325 (https://doi.org/10.11896/j.issn.1005-023X.2018.19.006).