ANN prediction of the efficiency of the decolourisation of organic dyes in wastewater by plasma needle
Main Article Content
Abstract
In this paper, the results of decolourisation of Reactive Orange 16 (RO 16), Reactive Blue 19 (RB 19) and Direct Red 28 (DR 28) textile dyes in aqueous solution by plasma needle are presented. Treatment time, feed gas flow rate (1, 4 and 8 dm3 min-1) and gas composition (Ar, Ar/O2) were optimized to achieve the best performance of the plasma treatment. An artificial neural network (ANN) was used for the prediction of parameters relevant for the decolourisation outcome. It was found that more than 95 % decolourisation could be achieved for all three dyes after plasma treatment, although the decolourisation of DR 28 was much slower than those of the other two dyes, which could be explained by the complexity of its molecular structure. It was concluded that the oxidation was very dependent on all three mentioned parameters. The ANN predicted the treatment time as the crucial factor for decolourisation performance of RO 16 and DR 28, while the Ar flow rate was the most relevant for RB 19 decolourisation. The obtained results suggest that the plasma needle is a promising tool for the oxidation of organic pollutants and that an ANN could be used for optimization of the treatment parameters to achieve high removal rates.
Downloads
Metrics
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
E. Bizani, K. Fytianos, I. Poulios, V. Tsiridis, J. Hazard. Mater. 136 (2006) 85 (http://dx.doi.org/10.1016/j.jhazmat.2005.11.017)
S. Dutta, R. Saha, H. Kalita, A. Bezbaruah, Environ. Technol. Innov. 5 (2016) 176 (http://dx.doi.org/10.1016/j.eti.2016.03.001)
E. Basturk, M. Karatas, Ultrason. Sonochem. 21 (2014) 1881 (http://dx.doi.org/10.1016/j.ultsonch.2014.03.026)
J. Gao, Q. Zhang, K. Su, R. Chen, Y. Peng, J. Hazard. Mater. 174 (2010) 215 (http://dx.doi.org/10.1016/j.jhazmat.2009.09.039)
B. Dojcinovic, PhD Thesis, Faculty of Chemistry, Belgrade, 2011
Z. Cheng, L. Zhang, X. Guo, X. Jiang, T. Li, Spectrochim. Acta, A. 137C (2014) 1126 (http://dx.doi.org/10.1016/j.saa.2014.08.138)
H. Ali, Water, Air Soil Pollut. 213 (2010) 251 (http://dx.doi.org/10.1007/s11270-010-0382-4)
A. R. Nešić, S. J. Veličković, D. G. Antonović, Compos., B 53 (2013) 145 (http://dx.doi.org/10.1016/j.compositesb.2013.04.053)
N. H. H. Hairom, A. W. Mohammad, A. A. H. Kadhum, J. Water Process Eng. 4 (2014) 99 (http://dx.doi.org/10.1016/j.jwpe.2014.09.008)
C. Tizaoui, N. Grima, Chem. Eng. J. 173 (2011) 463 (http://dx.doi.org/10.1016/j.cej.2011.08.014)
V. Janaki, K. Vijayaraghavan, A. K. Ramasamy, K. Lee, B. T Oh, S. Kamala-Kannan, J. Hazard. Mater. 241–242 (2012) 110 (http://dx.doi.org/10.1016/j.jhazmat.2012.09.019)
Y. Sun, Y. Liu, R. Li, G. Xue, S. Ognier, Chemosphere 155 (2016) 243 (http://dx.doi.org/10.1016/j.chemosphere.2016.04.026)
N. Haddou, M. R. Ghezzar, F. Abdelmalek, S. Ognier, M. Martel, A. Addou, Chemosphere 107 (2014) 304 (http://dx.doi.org/10.1016/j.chemosphere.2013.12.071)
B. P. Dojčinović, B. M. Obradović, M. M. Kuraica, M. V. Pergal, S. D. Dolić, D. R. Indić, T. B. Tosti, D. D. Manojlović, J. Serb. Chem. Soc. 81 (2016) 829 (http://dx.doi.org/10.2298/JSC160105030D)
M. Hijosa-Valsero, R. Molina, H. Schikora, M. Müller, J. M. Bayona, J. Hazard. Mater. 262 (2013) 664 (http://dx.doi.org/10.1016/j.jhazmat.2013.09.022)
M. Tichonovas, E. Krugly, V. Racys, R. Hippler, V. Kauneliene, I. Stasiulaitiene, D. Martuzevicius, Chem. Eng. J. 229 (2013) 9 (http://dx.doi.org/10.1016/j.cej.2013.05.095)
Y. Sun, R. Li, G. Xue, S. Ognier, Chemosphere 155 (2016) 243 (https://doi.org/10.1016/j.chemosphere.2016.04.026)
T. Wang, G. Qu, J. Ren, Q. Sun, D. Liang, S. Hu, J. Hazard. Mater. 302 (2016) 65 (http://dx.doi.org/10.1016/j.jhazmat.2015.09.051)
N. Puač, D. Maletić, S. Lazović, G. Malović, A. Orević, Z. L. Petrović, N. Puač, D. Maletić, S. Lazović, G. Malović, A. Dordević, Z. L. J. Petrović, Appl. Phys. Lett. 101 (2012) 2010 (http://dx.doi.org/10.1063/1.4735156)
R. P. Joshi, S. M. Thagard, Plasma Chem. Plasma Process. 33 (2013) 17 (http://dx.doi.org/10.1007/s11090-013-9436-x)
P. Lukes, E. Dolezalova, I. Sisrova, M. Clupek, Plasma Sources Sci. Technol. 23 (2014) 015019 (http://dx.doi.org/10.1088/0963-0252/23/1/015019)
A. Cabrera Reina, L. Santos-Juanes Jordá, J. L. García Sánchez, J. L. Casas López, J. A. Sánchez Pérez, Appl. Catal., B 119–120 (2012) 132 (http://dx.doi.org/10.1016/j.apcatb.2012.02.021)
R. Zaplotnik, M. Bišćan, Z. Kregar, U. Cvelbar, M. Mozetič, S. Milošević, Spectrochim. Acta,B 103–104 (2015) 124 (http://dx.doi.org/10.1016/j.sab.2014.12.004)
S. Heddam, H. Lamda, S. Filali, Environ. Process. 3 (2016) 153 (http://dx.doi.org/10.1007/s40710-016-0129-3)
K. Munro, T. H. Miller, C. P. B. Martins, A. M. Edge, D. A. Cowan, L. P. Barron, J. Chromatogr., A 1396 (2015) 34 (http://dx.doi.org/10.1016/j.chroma.2015.03.063).
H. Simsek, Environ. Technol. (UK) 37 (2016) 2879 (http://dx.doi.org/10.1080/09593330.2016.1167964)
X. Zhang, Y. Zhu, X. Chen, W. Shen, R. Lute, J. Bioresour. Bioprod. 3 (2018) 71 (http://dx.doi.org/10.21967/jbb.v3i2.112)
D. F. Specht, IEEE Trans. Neural Networks 2 (1991) 568 (http://dx.doi.org/10.1109/72.97934)
M. D. Radović, J. Z. Mitrović, D. V. Bojić, M. D. Antonijević, M. M. Kostić, R. M. Baošić, A. L. Bojić, Water SA 40 (2014) 571 (http://dx.doi.org/10.4314/wsa.v40i3.21).
M. A. N. Khan, M. Siddique, F. Wahid, R. Khan, Ultrason. Sonochem. 26 (2015) 370 (http://dx.doi.org/10.1016/j.ultsonch.2015.04.012)
S. Bilgi, C. Demir, Dyes Pigments 66 (2005) 69 (http://dx.doi.org/10.1016/j.dyepig.2004.08.007)
C. Guillard, H. Lachheb, A. Houas, M. Ksibi, E. Elaloui, J.-M. M. Herrmann, J. Photochem. Photobiol., A 158 (2003) 27 (http://dx.doi.org/10.1016/S1010-6030(03)00016-9)
U. Isah A., G. Abdulraheem, S. Bala, S. Muhammad, M. Abdullahi, Int. Biodeterior. Biodegradation 102 (2015) 265 (http://dx.doi.org/10.1016/j.ibiod.2015.04.006)
K. K. Panda, A. P. Mathews, Chem. Eng. J. 255 (2014) 553 (http://dx.doi.org/10.1016/j.cej.2014.06.071)
D. Gumuchian, S. Cavadias, X. Duten, M. Tatoulian, P. Da Costa, S. Ognier, Chem. Eng. Process. Process Intensif. 82 (2014) 185 (http://dx.doi.org/10.1016/j.cep.2014.06.003).
B. Jiang, J. Zheng, S. Qiu, M. Wu, Q. Zhang, Z. Yan, Q. Xue, Chem. Eng. J. 236 (2014) 348 (http://dx.doi.org/10.1016/j.cej.2013.09.090)
Y. Miyazaki, K. Satoh, H. Itoh, Electr. Eng. Japan 174 (2011) 1 (http://dx.doi.org/10.1002/eej.20937)
Ward Systems Group Inc. NeuroShell 2 (2008) Available at: http://www.wardsystems.com (Accesses: 22nd July 2019)
D. Z. Antanasijević, M. D. Ristić, A. A. Perić-Grujić, V. V. Pocajt, Int. J. Greenh. Gas Control 20 (2014) 244 (http://dx.doi.org/10.1016/j.ijggc.2013.11.011).