Corrosion protection of AZ91D magnesium alloy by a duplex coating
Main Article Content
Abstract
A duplex coating was formed under potentiostatic conditions on magnesium alloy AZ91D in order to improve its corrosion resistance in a simulated physiological environment. The first layer was formed by anodization at low potentials in molybdate solution. The outer layer was a PPy film electrosynthesized in sodium salicylate solution. The conditions of the formation were determined to obtain a layer with globular morphology. The bilayer was characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The corrosion protection properties of the coatings were examined in Ringer solution by monitoring the open circuit potential (OCP), polarization techniques, and electrochemical impedance spectroscopy (EIS). The obtained results showed that the bilayer improves the corrosion resistance of the substrate. Moreover, the duplex coating presented better anticorrosive properties than a single PPy film. Afterwards, the bilayer was modified by cementation of silver ions from a solution containing AgNO3. The modified electrode exhibited good antibacterial properties.
Downloads
Metrics
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
V. K. Bommala, M. G. Krishna, C. T. Rao, J. Magnes. Alloy. 7 (2019) 72 (https://doi.org/10.1016/j.jma.2018.11.001)
M. Sankar, J. Vishnu, M. Gupta, G. Manivasagam, Applications of Nanocomposite Materials in Orthopedics, Elsevier Inc., Ámsterdam, 2019, pp. 83–109 (https://doi.org/10.1016/B978-0-12-813740-6.00005-3)
F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Linderberg, C. J. Wirth, H. Windhagen, Biomaterials 26 (2005) 3557 (https://dx.doi.org/10.1016/j.biomaterials.2005.10.003)
Z. Zhai, X. Qu, H. Li, K. Yang, P. Wan, L. Tan, Z. Ouyang, X. Liu, B. Tian, F.Xiao, W. Wang, C. Jiang, T. Tang, Q. Fan, A. Qin, K. Dai, Biomaterials 35 (2014) 6299 (https://dx.doi.org/10.1016/j.biomaterials.2014.04.044)
P. Amaravathy, S. Sathyanarayanan, S. Sowndarya, N. Rajendran, Ceram. Int. 40 (2) 6617 (https://dx.doi.org/10.1016/j.ceramint.2013.11.119)
A. Chaya, S. Yoshizawa, K. Verdelis, N. Myers, B. J. Costello, D. T. Chou, S. Pal, S. Maiti, P. N. Kumta, C. Sfeir. Acta Biomater. 18 (2015) 262 (https://doi.org/10.1016/j.actbio.2015.02.010)
N. Sezer, Z. Evis, S. M. Kayhan, A. Tahmasebifar, M. Koç. J. Magnes. Alloys 6 (2018) 23 (https://doi.org/10.1016/j.jma.2018.02.003)
D. J. Walton, Mater. Des. 11 (1990) 142 (https://dx.doi.org/10.1016/0261-3069(90)90004-4)
N. K. Guimard, N. Gomez, C. E. Schmidt, Prog. Polym. Sci. 32 (2007) 876 (https://dx.doi.org/10.1016/j.progpolymsci.2007.05.012)
D. Gopi, S. Ramya, D. Rajeswari, L. Kavitha, Colloids Surfaces, B 107 (2013) 130 (https://dx.doi.org/10.1016/j.colsurfb.2013.01.065)
M. C. Turhan, M. Weiser, H. Jha, S. Virtanen, Electrochim. Acta 56 (2011) 5347 (https://dx.doi.org/10.1016/j.electacta.2011.03.120)
M. C. Turhan, M. Weiser, M. S. Killian, B. Leitner, S. Virtanen, Synth. Met. 161 (2011) 360 (https://dx.doi.org/10.1016/j.synthmet.2010.11.048v)
Z. Grubač, I. Š. Rončević, M. M. Huković, Corros. Sci. 102 (2016) 310 (https://dx.doi.org/10.1016/j.corsci.2015.10.022)
M. Hatami, M. Saremi, R. Naderi, Prog. Nat. Sci. Mat. Int. 25 (2015) 478 (https://dx.doi.org/10.1016/j.pnsc.2015.10.001)
M. B. González, O. V. Quinzani, M. E. Vela, A. A. Rubert, G. Benítez, S. B. Saidman, Synth. Met. 162 (2012) 1133 (https://dx.doi.org/10.1016/j.synthmet.2012.05.013)
M. Saugo, D. O. Flamini, L. I. Brugnoni, S. B. Saidman, Mater. Sci. Eng., C 56 (2015) 95 (https://dx.doi.org/10.1016/j.msec.2015.06.014)
A. Forero López, I. L. Lehr, L. I. Brugnoni, S. B. Saidman, J. Magnes. Alloys 6 (2018) 15 (https://dx.doi.org/10.1016/j.jma.2017.12.005)
Clinical Laboratory Standards Institute, Performance standards for antimicrobial disk susceptibility tests, Approved standard – 9th ed., CLSI document M2-A9. 26:1, Clinical Laboratory Standards Institute, Wayne, PA, 2006
A. Forero López, I. L. Lehr, S. B. Saidman, J. Alloys Compd. 702 (2017) 338 (https://dx.doi.org/10.1016/j.jallcom.2017.01.030)
S. Kaabi Falahieh Asl, S. Nemeth, M. Jen Tan, Mater. Chem Phys. 161 (2015) 185 (https://dx.doi.org/10.1016/j.matchemphys.2015.05.035)
F. Guadarrama-Muñoz, J. Mendoza-Flores, R. Duran-Romero, J. Genesca, Electrochim. Acta 51 (2006) 1820 (https://dx.doi.org/10.1016/j.electacta.2005.02.144)
K. Cysewska, L. Fernández Macía, P. Jasinski, A. Hubin, Electrochim. Acta 245 (2017) 327 (https://dx.doi.org/10.1016/j.electacta.2017.05.172)
M. Jamesh, S. Kumar, T. S. N. Sankara Narayanan, Corros. Sci. 53 (2011) 645 (https://dx.doi.org/10.1016/j.corsci.2010.10.011)
T. Ishizaki, Y. Masuda, K. Teshima, Surf. Coat. Technol. 217 (2013) 76 (https://dx.doi.org/10.1016/j.surfcoat.2012.11.076)
JCPDS, International Center of Powder Diffraction Data: Swarthmore, PA, 1989; Card No. 04-0783
T. M. McEvoy, K. J. Stevenson, Langmuir 19 (2003) 4316 (https://dx.doi.org/10.1021/la027020u)
A. Quintana, A. Varea, M. Guerrero, S. Suriñach, M. D. Baró, J. Sort, E. Pellicer, Electrochim. Acta 173 (2015) 705 (https://dx.doi.org/10.1016/j.electacta.2015.05.112)
T. Nonaka, Y. Uemura, K. Enishi, S. Kurihara, J Appl. Polym. Sci. 62 (1996) 1651 (https://dx.doi.org/10.1002/(SICI)1097-4628(19961205)62:10<1651::AID-APP17>3.0.CO;2-4).