Corrosion protection of AZ91D magnesium alloy by a duplex coating

Main Article Content

Ana Deisy Forero Lopez
Ana Paula Loperena
Ivana Leticia Lehr
https://orcid.org/0000-0002-4390-9009
Lorena Ines Brugnoni
Silvana Beatriz Saidman

Abstract

A duplex coating was formed under potentiostatic conditions on mag­nesium alloy AZ91D in order to improve its corrosion resistance in a simulated physiological environment. The first layer was formed by anodizat­ion at low potentials in molybdate solution. The outer layer was a PPy film electro­synthesized in sodium salicylate solution. The conditions of the form­ation were determined to obtain a layer with globular morphology. The bilayer was characterized by scanning electron microscopy (SEM) and X-ray diffract­ion (XRD). The corrosion protection properties of the coatings were examined in Ringer solution by monitoring the open circuit potential (OCP), polarization techniques, and electrochemical impedance spectroscopy (EIS). The obtained results showed that the bilayer improves the corrosion resistance of the sub­strate. Moreover, the duplex coating presented better anticorrosive properties than a single PPy film. Afterwards, the bilayer was modified by cementation of silver ions from a solution containing AgNO3. The modified electrode exhi­bited good antibacterial properties.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
A. D. Forero Lopez, A. P. Loperena, I. L. Lehr, L. I. Brugnoni, and S. B. Saidman, “Corrosion protection of AZ91D magnesium alloy by a duplex coating”, J. Serb. Chem. Soc., vol. 85, no. 10, pp. 1317–1328, Oct. 2020.
Section
Electrochemistry

References

V. K. Bommala, M. G. Krishna, C. T. Rao, J. Magnes. Alloy. 7 (2019) 72 (https://doi.org/10.1016/j.jma.2018.11.001)

M. Sankar, J. Vishnu, M. Gupta, G. Manivasagam, Applications of Nanocomposite Materials in Orthopedics, Elsevier Inc., Ámsterdam, 2019, pp. 83–109 (https://doi.org/10.1016/B978-0-12-813740-6.00005-3)

F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Linderberg, C. J. Wirth, H. Windhagen, Biomaterials 26 (2005) 3557 (https://dx.doi.org/10.1016/j.biomaterials.2005.10.003)

Z. Zhai, X. Qu, H. Li, K. Yang, P. Wan, L. Tan, Z. Ouyang, X. Liu, B. Tian, F.Xiao, W. Wang, C. Jiang, T. Tang, Q. Fan, A. Qin, K. Dai, Biomaterials 35 (2014) 6299 (https://dx.doi.org/10.1016/j.biomaterials.2014.04.044)

P. Amaravathy, S. Sathyanarayanan, S. Sowndarya, N. Rajendran, Ceram. Int. 40 (2) 6617 (https://dx.doi.org/10.1016/j.ceramint.2013.11.119)

A. Chaya, S. Yoshizawa, K. Verdelis, N. Myers, B. J. Costello, D. T. Chou, S. Pal, S. Maiti, P. N. Kumta, C. Sfeir. Acta Biomater. 18 (2015) 262 (https://doi.org/10.1016/j.actbio.2015.02.010)

N. Sezer, Z. Evis, S. M. Kayhan, A. Tahmasebifar, M. Koç. J. Magnes. Alloys 6 (2018) 23 (https://doi.org/10.1016/j.jma.2018.02.003)

D. J. Walton, Mater. Des. 11 (1990) 142 (https://dx.doi.org/10.1016/0261-3069(90)90004-4)

N. K. Guimard, N. Gomez, C. E. Schmidt, Prog. Polym. Sci. 32 (2007) 876 (https://dx.doi.org/10.1016/j.progpolymsci.2007.05.012)

D. Gopi, S. Ramya, D. Rajeswari, L. Kavitha, Colloids Surfaces, B 107 (2013) 130 (https://dx.doi.org/10.1016/j.colsurfb.2013.01.065)

M. C. Turhan, M. Weiser, H. Jha, S. Virtanen, Electrochim. Acta 56 (2011) 5347 (https://dx.doi.org/10.1016/j.electacta.2011.03.120)

M. C. Turhan, M. Weiser, M. S. Killian, B. Leitner, S. Virtanen, Synth. Met. 161 (2011) 360 (https://dx.doi.org/10.1016/j.synthmet.2010.11.048v)

Z. Grubač, I. Š. Rončević, M. M. Huković, Corros. Sci. 102 (2016) 310 (https://dx.doi.org/10.1016/j.corsci.2015.10.022)

M. Hatami, M. Saremi, R. Naderi, Prog. Nat. Sci. Mat. Int. 25 (2015) 478 (https://dx.doi.org/10.1016/j.pnsc.2015.10.001)

M. B. González, O. V. Quinzani, M. E. Vela, A. A. Rubert, G. Benítez, S. B. Saidman, Synth. Met. 162 (2012) 1133 (https://dx.doi.org/10.1016/j.synthmet.2012.05.013)

M. Saugo, D. O. Flamini, L. I. Brugnoni, S. B. Saidman, Mater. Sci. Eng., C 56 (2015) 95 (https://dx.doi.org/10.1016/j.msec.2015.06.014)

A. Forero López, I. L. Lehr, L. I. Brugnoni, S. B. Saidman, J. Magnes. Alloys 6 (2018) 15 (https://dx.doi.org/10.1016/j.jma.2017.12.005)

Clinical Laboratory Standards Institute, Performance standards for antimicrobial disk susceptibility tests, Approved standard – 9th ed., CLSI document M2-A9. 26:1, Clinical Laboratory Standards Institute, Wayne, PA, 2006

A. Forero López, I. L. Lehr, S. B. Saidman, J. Alloys Compd. 702 (2017) 338 (https://dx.doi.org/10.1016/j.jallcom.2017.01.030)

S. Kaabi Falahieh Asl, S. Nemeth, M. Jen Tan, Mater. Chem Phys. 161 (2015) 185 (https://dx.doi.org/10.1016/j.matchemphys.2015.05.035)

F. Guadarrama-Muñoz, J. Mendoza-Flores, R. Duran-Romero, J. Genesca, Electrochim. Acta 51 (2006) 1820 (https://dx.doi.org/10.1016/j.electacta.2005.02.144)

K. Cysewska, L. Fernández Macía, P. Jasinski, A. Hubin, Electrochim. Acta 245 (2017) 327 (https://dx.doi.org/10.1016/j.electacta.2017.05.172)

M. Jamesh, S. Kumar, T. S. N. Sankara Narayanan, Corros. Sci. 53 (2011) 645 (https://dx.doi.org/10.1016/j.corsci.2010.10.011)

T. Ishizaki, Y. Masuda, K. Teshima, Surf. Coat. Technol. 217 (2013) 76 (https://dx.doi.org/10.1016/j.surfcoat.2012.11.076)

JCPDS, International Center of Powder Diffraction Data: Swarthmore, PA, 1989; Card No. 04-0783

T. M. McEvoy, K. J. Stevenson, Langmuir 19 (2003) 4316 (https://dx.doi.org/10.1021/la027020u)

A. Quintana, A. Varea, M. Guerrero, S. Suriñach, M. D. Baró, J. Sort, E. Pellicer, Electrochim. Acta 173 (2015) 705 (https://dx.doi.org/10.1016/j.electacta.2015.05.112)

T. Nonaka, Y. Uemura, K. Enishi, S. Kurihara, J Appl. Polym. Sci. 62 (1996) 1651 (https://dx.doi.org/10.1002/(SICI)1097-4628(19961205)62:10<1651::AID-APP17>3.0.CO;2-4).