Corrosion protection of AZ91D magnesium alloy by a duplex coating

Ana Deisy Forero Lopez, Ana Paula Loperena, Ivana Leticia Lehr, Lorena Ines Brugnoni, Silvana Beatriz Saidman

Abstract


A duplex coating was formed under potentiostatic conditions on magnesium alloy AZ91D in order to improve its corrosion resistance in simulated physiological environment. The first layer was formed by anodization at low potentials in molybdate solution. The outer layer was a PPy film electrosynthesized in sodium salicylate solution. The conditions of the formation were determined to obtain a layer with globular morphology. The bilayer was characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The corrosion protection properties of the coatings were examined in Ringer solution by monitoring the open circuit potential (OCP), polarization techniques, and electrochemical impedance spectroscopy (EIS). The obtained results showed that the bilayer improves the corrosion resistance of the substrate. Moreover, the duplex coating presented better anticorrosive properties than the single PPy film. Afterwards, the bilayer was modified by cementation of silver ions from a solution containing AgNO3. The modified electrode exhibited good antibacterial properties.


Keywords


Mg substrate; anticorrosion; electrodeposited polypyrrole; molybdate; salycilate

Full Text:

PDF (1,545 kB)

References


V. K. Bommala, M. G. Krishna, C. T. Rao, J. Magnes. Alloy. 7 (2019) 72 (https://doi.org/10.1016/j.jma.2018.11.001)

M. Sankar, J. Vishnu, M. Gupta, G. Manivasagam, Applications of Nanocomposite Materials in Orthopedics, Elsevier Inc., Ámsterdam, 2019, p. 83-109 (https://doi.org/10.1016/B978-0-12-813740-6.00005-3)

F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Linderberg, C. J. Wirth, H. Windhagen, Biomaterials 26 (2005) 3557 (https://dx.doi.org/10.1016/j.biomaterials.2005.10.003)

Z. Zhai, X. Qu, H. Li, K. Yang, P. Wan, L. Tan, Z. Ouyang, X. Liu, B. Tian, F.Xiao, W. Wang, C. Jiang, T. Tang, Q. Fan, A. Qin, K. Dai, Biomaterials 35 (2014) 6299 (https://dx.doi.org/10.1016/j.biomaterials.2014.04.044)

P. Amaravathy, S. Sathyanarayanan, S. Sowndarya, N. Rajendran, Ceram. Int. 40 (2) 6617 (https://dx.doi.org/10.1016/j.ceramint.2013.11.119)

A. Chaya, S. Yoshizawa, K. Verdelis, N. Myers, B. J. Costello, D. T. Chou, S. Pal, S. Maiti, P. N. Kumta, C. Sfeir. Acta Biomater. 18 (2015) 262 (https://doi.org/10.1016/j.actbio.2015.02.010)

N. Sezer, Z. Evis, S. M. Kayhan, A. Tahmasebifar, M. Koç. J. Magnes. Alloy. 6 (2018) 23 (https://doi.org/10.1016/j.jma.2018.02.003)

D. J. Walton, Mater. Des. 11 (1990) 142 (https://dx.doi.org/10.1016/0261-3069(90)90004-4)

N. K. Guimard, N. Gomez, C. E. Schmidt, Prog. Polym. Sci. 32 (2007) 876 (https://dx.doi.org/10.1016/j.progpolymsci.2007.05.012)

D. Gopi, S. Ramya, D. Rajeswari, L. Kavitha, Colloids Surf. B, Biointerfaces 107 (2013) 130 (https://dx.doi.org/10.1016/j.colsurfb.2013.01.065)

M. C. Turhan, M. Weiser, H. Jha, S. Virtanen, Electrochim. Acta. 56 (2011) 5347 (https://dx.doi.org/10.1016/j.electacta.2011.03.120)

M. C. Turhan, M. Weiser, M. S. Killian, B. Leitner, S. Virtanen, Synth. Met. 161 (2011) 360 (https://dx.doi.org/10.1016/j.synthmet.2010.11.048v)

Z. Grubač, I. Š. Rončević, M. M. Huković, Corros. Sci. 102 (2016) 310 (https://dx.doi.org/10.1016/j.corsci.2015.10.022)

M. Hatami, M. Saremi, R. Naderi, Prog. Nat. Sci. Mat. Int. 25 (2015) 478 (https://dx.doi.org/10.1016/j.pnsc.2015.10.001)

M. B. González, O. V. Quinzani, M. E. Vela, A. A. Rubert, G. Benítez, S. B. Saidman, Synth. Met. 162 (2012) 1133 (https://dx.doi.org/10.1016/j.synthmet.2012.05.013)

M. Saugo, D. O. Flamini, L. I. Brugnoni, S. B. Saidman, Mater. Sci. Eng. C 56 (2015) 95 (https://dx.doi.org/10.1016/j.msec.2015.06.014)

A. Forero López, I. L. Lehr, L. I. Brugnoni, S. B. Saidman, J. Magnes. Alloys 6 (2018) 15 (https://dx.doi.org/10.1016/j.jma.2017.12.005)

Clinical Laboratory Standards Institute. Performance standards for antimicrobial disk susceptibility tests; Approved standard-9th ed. CLSI document M2-A9. 26:1, Clinical Laboratory Standards Institute, Wayne, PA, 2006.

A. Forero López, I. L. Lehr, S. B. Saidman, J. Alloys Compd. 702 (2017) 338 (https://dx.doi.org/10.1016/j.jallcom.2017.01.030)

S. Kaabi Falahieh Asl, S. Nemeth, M. Jen Tan, Mater. Chem Phys. 161 (2015) 185 (https://dx.doi.org/10.1016/j.matchemphys.2015.05.035)

F. Guadarrama-Muñoz, J. Mendoza-Flores, R. Duran-Romero, J. Genesca, Electrochim. Acta 51 (2006) 1820 (https://dx.doi.org/10.1016/j.electacta.2005.02.144)

K. Cysewska, L. Fernández Macía, P. Jasinski, A. Hubin, Electrochim. Acta 245 (2017) 327 (https://dx.doi.org/10.1016/j.electacta.2017.05.172)

M. Jamesh, S. Kumar, T. S. N. Sankara Narayanan, Corros. Sci. 53 (2011) 645 (https://dx.doi.org/10.1016/j.corsci.2010.10.011)

T. Ishizaki, Y. Masuda, K. Teshima, Surf. Coat. Technol. 217 (2013) 76 (https://dx.doi.org/10.1016/j.surfcoat.2012.11.076)

JCPDS, International Center of Powder Diffraction Data: Swarthmore, PA, 1989; Card No. 04-0783.

T. M. McEvoy, K. J. Stevenson, Langmuir 19 (2003) 4316 (https://dx.doi.org/10.1021/la027020u)

A. Quintana, A. Varea, M. Guerrero, S. Suriñach, M. D. Baró, J. Sort, E. Pellicer, Electrochim. Acta 173 (2015) 705 (https://dx.doi.org/10.1016/j.electacta.2015.05.112)

T. Nonaka, Y. Uemura, K. Enishi, S. Kurihara, J Appl. Polym. Sci. 62 (1996) 1651(https://dx.doi.org/10.1002/(SICI)1097-4628(19961205)62:10<1651::AID-APP17>3.0.CO;2-4)




DOI: https://doi.org/10.2298/JSC200221027F

Copyright (c) 2020 Journal of the Serbian Chemical Society

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 1.097
5 Year Impact Factor 1.023
(
138 of 177 journals)