The purification of natural coagulant extracted from common bean on IRA 958 Cl anion exchange resin
Main Article Content
Abstract
Natural coagulants are of organic nature and can increase the organic load of treated water and thus, they require purification in order to remove compounds that do not have coagulation activity. In this work, natural coagulant was extracted from 50 g L-1 of ground common bean with 0.5 mol L-1 NaCl. Proteins from this crude extract were precipitated by addition of ammonium sulphate. After the precipitation, separation and resolution of proteins, further purification was performed using the anion-exchange resin Amberlite IRA 958 Cl in a batch process. Partially purified coagulant eluted with 2 mol L-1 NaCl solution achieved the highest coagulation activity of 53.3 % at a dose of 1 mL L-1 although it contained the lowest amount of proteins, but a slightly lower coagulation activity of 49.8 % was achieved at more than 5 times lower dosage of the same fraction. The organic load in treated water when the purified fraction was applied as coagulant was almost 4 times lower than in case of the crude extract as coagulant.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
S. C. Bondy, Neurotoxicology 31 (2010) 575 (https://doi.org/10.1016/j.neuro.2010.05.009)
V. Chico Galdo, C. Massart, L. Jin, V. Vanvooren, P. Caillet-Fauquet, G. Andry, P. Lothaire, D. Dequanter, M. Friedman, J. Van Sande, Mol. Cell. Endocrinol. 257–258 (2006) 6 (https://doi.org/10.1016/j.mce.2006.06.003)
D. Berg, M. Gerlach, M. B. H. Youdim, K. L. Double, L. Zecca, P. Riederer, G. Becker, J. Neurochem. 79 (2001) 225 (https://doi.org/10.1046/j.1471-4159.2001.00608.x)
V. R. M. Chandrasekaran, I. Muthaiya, P.-C. Huang, M.-Y. Liu, Water Res. 4 (2010) 5823 (https://doi.org/10.1016/j.watres.2010.06.063)
A. Ndabigengesere, K. S. Narasiah, Water Res. 32 (1998) 781 (https://doi.org/10.1016/S0043-1354(97)00295-9)
K. A. Ghebremichael, K. R. Gunaratna, H. Henriksson, H. Brumer, G. Dalhammar, Water Res. 39 (2005) 2338 (https://doi.org/10.1016/j.watres.2005.04.012)
K. A. Ghebremichael, K. R. Gunaratna, G. Dalhammar, Appl. Microbiol. Biotechnol. 70 (2006) 526 (https://doi.org/10.1007/s00253-005-0130-7)
M. G. Antov, M. B. Šćiban, N. J. Petrović, Bioresour. Technol. 101 (2010) 2167 (https://doi.org/10.1016/j.biortech.2009.11.020)
M. G. Antov, M. B. Šćiban, J. M. Prodanović, Ecol. Eng. 49 (2012) 48 (https://doi.org/10.1016/j.ecoleng.2012.08.015)
A. T. A. Baptista, M. O. Silva, R. G. Gomes, R. Bergamasco, M. F. Vieira, A. M. S. Vieira, Sep. Purif. Technol. 180 (2017) 114 (https://doi.org/10.1016/j.seppur.2017.02.040)
S. M. Dezfooli, V. N. Uversky, M. Saleem, F. S. Baharudin, S. M. S. Hitam, R. T. Bachmann, Process Biochem. 51 (2016) 1085 (https://doi.org/10.1016/j.procbio.2016.04.021)
A. T. A. Baptista, P. F. Coldebella, P. H. F. Cardines, R. G. Gomes, M. F. Vieira, R. Bergamasco, A. M. S. Vieira, Chem. Eng. J. 276 (2015) 166 (https://doi.org/10.1016/j.cej.2015.04.045)
A. S. Taiwo, K. Adenike, O. Aderonke, Heliyon 6 (2020) (https://doi.org/10.1016/j.heliyon.2020.e03335)
M. Rosmawanie, R. Mohamed, A. Al-Gheethi, F. Pahazri, M. K. Amir-Hashim, M. Z. Nur-Shaylinda, J. Environ. Chem. Eng. 6 (2018) 2417 (https://doi.org/10.1016/j.jece.2018.03.035)
F. P. Camacho, V. S. Sousa, R. Bergamasco, M. R. Teixeira, Chem. Eng. J. 313 (2017) 226 (https://doi.org/10.1016/j.cej.2016.12.031)
E. Vunain, E. F. Masoamphambe, P. M. G. Mpeketula, M. Monjerezi, A. Etale, J. Environ. Chem. Eng. 7 (2019) 103118 (https://doi.org/10.1016/j.jece.2019.103118)
D. L. Villaseñor-Basulto, P. D. Astudillo-Sánchez, J. del Real-Olvera, E. R. Bandala, J. Water Process Eng. 23 (2018) 151 (https://doi.org/10.1016/j.jwpe.2018.03.017)
M. Šćiban, M. Klašnja, J. Stojimirović, Acta Periodica Technol. 36 (2005) 81 (http://www.doiserbia.nb.rs/img/doi/1450-7188/2005/1450-71880536081S.pdf)
M. B. Šćiban, M. A. Vasić, J. M. Prodanović, M. G. Antov, M. T. Klašnja, Acta Periodica Technol. 41 (2010) 141 (http://www.doiserbia.nb.rs/img/doi/1450-7188/2010/1450-71881041141S.pdf)
J. M. Prodanović, M. B. Šćiban, M. G. Antov, J. M. Dodić, Romanian Biotechnol. Lett. 16 (2011) 6638
J. M. Prodanović, M. B. Šćiban, M. G. Antov, D. V. Kukić, V. M. Vasić, Acta Periodica Technol. 46 (2015) 77 (http://www.doiserbia.nb.rs/img/doi/1450-7188/2015/1450-71881546077P.pdf)
V. M. Vasić, J. M. Prodanović, D. V. Kukić, M. B. Šćiban, M. G. Antov, D. Ž. Ivetić, Desalin. Water Treat. 51 (2013) 437 (https://doi.org/10.1080/19443994.2012.714525)
M. M. Bradford, Anal. Biochem. 72 (1976) 248 (https://doi.org/10.1016/0003-2697(76)90527-3)
T. Okuda, A. U. Baes, W. Nishijima, M. Okada, Water Res. 35 (2001) 405 (https://doi.org/10.1016/S0043-1354(00)00290-6)
R. Feliks, S. Škunca-Milovanović, Voda za piće. Standardne metode za ispitivanje higijenske ispravnosti, Savezni zavod za zdravstvenu zaštitu & NIP Privredni pregled, Blgrade, 1990, p.p. 134–136 (in Serbian)
C.-Y. Yin, Process Biochem. 45 (2010) 1437 (https://doi.org/10.1016/j.procbio.2010.05.030)
R. Scopes, Protein Purification, 3rd ed., Springer, New York, 1994
K. Ghebremichael, J. Abaliwano, G. Amy, J. Water Supply Res. Technol. AQUA 58 (2009) 267 (https://doi.org/10.2166/aqua.2009.060)
T. Nkurunziza, J. B. Nduwayezu, E. N. Banadda, I. Nhapi, Water Sci. Technol. 59 (2009) 1551 (https://doi.org/10.2166/wst.2009.155)
M. Pritchard, T. Mkandawire, A. Edmondson, J. G. ONeill, G. Kululanga, Phys. Chem. Earth 34 (2009) 799 (https://doi.org/10.1016/j.pce.2009.07.001)
M. Pritchard, T. Craven, T. Mkandawire, A. S. Edmondson, J. G. ONeill, Phys. Chem. Earth 35 (2010) 791 (https://doi.org/10.1016/j.pce.2010.07.020).