The purification of natural coagulant extracted from common bean on IRA 958 Cl anion exchange resin

Jelena M. Prodanović, Marina B. Šćiban, Dragana V. Kukić, Vesna M Vasić, Nevena T. Blagojev, Mirjana G. Antov

Abstract


Natural coagulants are of organic nature and can increase organic load of treated water, thus they require purification in order to remove compounds that do not have coagulation activity. In this work natural coagulant was extracted from 50 g L-1 of ground common bean with 0.5 mol L-1 NaCl. Proteins from this crude extract were precipitated by adding ammonium-sulphate. After precipitation, separation and resolution of proteins, further purification was done by anion-exchange resin Amberlite IRA 958 Cl in batch process. Partially purified coagulant eluted by 2 mol L-1 NaCl solution achieved the highest coagulation activity of 53.3 % at dose of 1 mL L-1 although it contained the lowest amount of proteins, but just slightly lower coagulation activity of 49.8 % was achieved at more than 5 times lower dosage of the same fraction. Organic load in treated water when purified fraction was applied as coagulant was almost 4 times lower than in case of crude extract as coagulant.


Keywords


Proteins, coagulation activity, water clarification, organic load

Full Text:

PDF (1,258 kB)

References


S. C. Bondy, Neurotoxicol. 31 (2010) 575 (https://doi.org/10.1016/j.neuro.2010.05.009)

V. Chico Galdo, C. Massart, L. Jin, V. Vanvooren, P. Caillet-Fauquet, G. Andry, P. Lothaire, D. Dequanter, M. Friedman, J. Van Sande, Mol. Cell. Endocrinol. 257-258 (2006) 6 (https://doi.org/10.1016/j.mce.2006.06.003)

D. Berg, M. Gerlach, M. B. H. Youdim, K. L. Double, L. Zecca, P. Riederer, G. Becker, J. Neurochem. 79 (2001) 225 (https://doi.org/10.1046/j.1471-4159.2001.00608.x)

V. R. M. Chandrasekaran, I. Muthaiya, P.-C. Huang, M.-Y. Liu, Water Res. 4 (2010) 5823 (https://doi.org/10.1016/j.watres.2010.06.063)

A. Ndabigengesere, K. S. Narasiah, Water Res. 32 (1998) 781 (https://doi.org/10.1016/S0043-1354(97)00295-9)

K. A. Ghebremichael, K. R. Gunaratna, H. Henriksson, H. Brumer, G. Dalhammar, Water Res. 39 (2005) 2338 (https://doi.org/10.1016/j.watres.2005.04.012)

K. A. Ghebremichael, K. R. Gunaratna, G. Dalhammar, Appl. Microbiol. Biotechnol. 70 (2006) 526 (https://doi.org/10.1007/s00253-005-0130-7)

M. G. Antov, M. B. Šćiban, N. J. Petrović, Bioresour. Technol. 101 (2010) 2167 (https://doi.org/10.1016/j.biortech.2009.11.020)

M. G. Antov, M. B. Šćiban, J. M. Prodanović, Ecol. Eng. 49 (2012) 48 (https://doi.org/10.1016/j.ecoleng.2012.08.015)

A. T. A. Baptista, M. O. Silva, R. G. Gomes, R. Bergamasco, M. F. Vieira, A. M. S. Vieira, Sep. Purif. Technol. 180 (2017) 114 (https://doi.org/10.1016/j.seppur.2017.02.040)

S. M. Dezfooli, V. N. Uversky, M. Saleem, F. S. Baharudin, S. M. S. Hitam, R. T. Bachmann, Process Biochem. 51 (2016) 1085 (https://doi.org/10.1016/j.procbio.2016.04.021)

A. T. A. Baptista, P. F. Coldebella, P. H. F. Cardines, R. G. Gomes, M. F. Vieira, R. Bergamasco, A. M. S. Vieira, Chem. Eng. J. 276 (2015) 166 (https://doi.org/10.1016/j.cej.2015.04.045)

A. S. Taiwo, K. Adenike, O. Aderonke, Heliyon. 6 (2020) (https://doi.org/10.1016/j.heliyon.2020.e03335)

M. Rosmawanie, R. Mohamed, A. Al-Gheethi, F. Pahazri, M. K. Amir-Hashim, M. Z. Nur-Shaylinda, J. Environ. Chem. Eng. 6 (2018) 2417 (https://doi.org/10.1016/j.jece.2018.03.035)

F. P. Camacho, V. S. Sousa, R. Bergamasco, M. R. Teixeira, Chem. Eng. J. 313 (2017) 226 (https://doi.org/10.1016/j.cej.2016.12.031)

E. Vunain, E. F. Masoamphambe, P. M. G. Mpeketula, M. Monjerezi, A. Etale, J. Environ. Chem. Eng. 7 (2019) (https://doi.org/10.1016/j.jece.2019.103118)

D. L. Villaseñor-Basulto, P. D. Astudillo-Sánchez, J. del Real-Olvera, E. R. Bandala, J. Water Process Eng. 23 (2018) 151 (https://doi.org/10.1016/j.jwpe.2018.03.017)

M. Šćiban, M. Klašnja, J. Stojimirović, Acta Periodica Technologica. 36 (2005) 81 (http://www.doiserbia.nb.rs/img/doi/1450-7188/2005/1450-71880536081S.pdf)

M. B. Šćiban, M. A. Vasić, J. M. Prodanović, M. G. Antov, M. T. Klašnja, Acta Periodica Technologica. 41 (2010) 141 (http://www.doiserbia.nb.rs/img/doi/1450-7188/2010/1450-71881041141S.pdf)

J. M. Prodanović, M. B. Šćiban, M. G. Antov, J. M. Dodić, Romanian Biotechnological Letters. 16 (2011) 6638

J. M. Prodanović, M. B. Šćiban, M. G. Antov, D. V. Kukić, V. M. Vasić, Acta Periodica Technologica. 46 (2015) 77 (http://www.doiserbia.nb.rs/img/doi/1450-7188/2015/1450-71881546077P.pdf)

V. M. Vasić, J. M. Prodanović, D. V. Kukić, M. B. Šćiban, M. G. Antov, D. Ž. Ivetić, Desalin. Water Treat. 51 (2013) 437 (https://doi.org/10.1080/19443994.2012.714525)

M. M. Bradford, Anal. Biochem. 72 (1976) 248 (https://doi.org/10.1016/0003-2697(76)90527-3)

T. Okuda, A. U. Baes, W. Nishijima, M. Okada, Water Res. 35 (2001) 405 (https://doi.org/10.1016/S0043-1354(00)00290-6)

R. Feliks, S. Škunca-Milovanović, Voda za piće. Standardne metode za ispitivanje higijenske ispravnosti, Savezni zavod za zdravstvenu zaštitu & NIP Privredni pregled, Beograd, 1990, p: 134-136 (in Serbian)

C.-Y. Yin, Process Biochem. 45 (2010) 1437 (https://doi.org/10.1016/j.procbio.2010.05.030)

R. Scopes, Protein Purification, 3rd edition, Springer, New York, 1994.

K. Ghebremichael, J. Abaliwano, G. Amy, J. Water Supply Res. Technol. AQUA. 58 (2009) 267 (https://doi.org/10.2166/aqua.2009.060)

T. Nkurunziza, J. B. Nduwayezu, E. N. Banadda, I. Nhapi, Water Sci. Technol. 59 (2009) 1551 (https://doi.org/10.2166/wst.2009.155)

M. Pritchard, T. Mkandawire, A. Edmondson, J. G. O’Neill, G. Kululanga, Phys. Chem. Earth. 34 (2009) 799 (https://doi.org/10.1016/j.pce.2009.07.001)

M. Pritchard, T. Craven, T. Mkandawire, A. S. Edmondson, J. G. O’Neill, Phys. Chem. Earth. 35 (2010) 791 (https://doi.org/10.1016/j.pce.2010.07.020)




DOI: https://doi.org/10.2298/JSC200311031P

Copyright (c) 2020 Journal of the Serbian Chemical Society

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 1.097
5 Year Impact Factor 1.023
(
138 of 177 journals)