Polymeric nanocomposition for innovative functional enhancement of electrodes and proton exchange membrane in microbial fuel cell

Main Article Content

Abdul Azeez Olayiwola Sirajudeen
M. Suffian M. Annuar


Practical application of microbial fuel cell (MFC), a sustainable energy device, is hampered by low power output. Its principal components i.e. anode, cathode and proton exchange membrane (PEM) are the focus of enhancement and modification in terms of their functional design and material. The anode surface conduciveness as electron sink is crucial to the power output magnitude, while the cathode electrode should be reactive for efficient oxygen reduction at tri-phase junction. PEM is solely responsible for unidirectional proton flow concomitantly completing the electrical circuit. Polymeric nanocomposites as electrode modifier improved significantly anode/cathode/PEM functions thus overall MFC performance. The review highlights the progress made in polymer-based modifications to anode, cathode and PEM material and function between year 2014 to 2019. The effects to biocompatibility, surface area, internal resistance, electrochemical activities, environmental sustainability, and overall MFC performance are discussed.


Download data is not yet available.


Metrics Loading ...

Article Details

How to Cite
A. A. O. Sirajudeen and M. S. M. Annuar, “Polymeric nanocomposition for innovative functional enhancement of electrodes and proton exchange membrane in microbial fuel cell”, J. Serb. Chem. Soc., vol. 86, no. 1, pp. 1–23, Jan. 2021.
Author Biography

M. Suffian M. Annuar, Institute of Biological Sciences, Faculty of ScienceUniversiti Malaya, Kuala Lumpur 50603, Malaysia



X. Jie, S. Gonzalez‐Cortes, T. Xiao, J. Wang, B. Yao, D. R. Slocombe, P. P. Edwards, Angew. Chem. Int. Ed. Engl. 56 (2017) 10170 (https://doi.org/10.1002/anie.201703489)

S. Kanimozhi, K. Perinbam, in Proceedings of the 3rd ISESCO International Workshop and Conference on Nanotechnology 2012 (IWCN2012), J. Phys: Conf. Ser. (2012), Selangor, Malaysia, IOP Publishing LTD, Selangor, 2013, p. 431

A. Parmar, N. K. Singh, A. Pandey, E. Gnansounou, D. Madamwar, Bioresour. Technol. 102 (2011) 10163 (https://doi.org/10.1016/j.biortech.2011.08.030)

Y. Hindatu, M. Annuar, R. Subramaniam, A. Gumel, Bioproc. Biosys. Eng. 40 (2017) 919 (https://doi.org/10.1007/s00449-017-1756-4)

A. Almatouq, A. O. Babatunde, Appl. Energy 230 (2018) 122 (https://doi.org/10.1016/j.apenergy.2018.08.108)

F. Yu, C. Wang, J. Ma, Materials 9 (2016) 807 (https://doi.org/10.3390/ma9100807)

B. E. Logan, Nat. Rev. Microbiol. 7 (2009) 375 (https://doi.org/10.1038/nrmicro2113)

L. Xiao, Z. He, Graphene-Based Energy Devices 13 (2015) 355 (https://doi.org/10.1002/9783527690312.ch13)

L. Fu, S. J. You, F. L.Yang, M. M. Gao, X. H. Fang, G. Q. Zhang, J. Chem. Technol. Biot. 85 (2010) 715 (https://doi.org/10.1002/jctb.2367)

I. Gajda, J. Greenman, C. Melhuish, C. Santoro, I. Ieropoulos, Bioresour. Technol. 215 (2016) 285 (https://doi.org/10.1016/j.biortech.2016.04.004)

I. Gajda, J. Greenman, C. Melhuish, C. Santoro, B. Li, P. Cristiani I. Ieropoulos, Water Res. 86 (2015) 108 (https://doi.org/10.1016/j.watres.2015.08.014)

Y. Hindatu, M. Annuar, A. Gumel, Renew. Sustain. Energy Rev. 73 (2017) 236 (https://doi.org/10.1016/j.rser.2017.01.138)

H. Yusuf, M. S. M. Annuar, R. Subramaniam, A. M. Gumel, Chem. Eng. Technol. 42 (2018) 566 (https://doi.org/10.1002/ceat.201800023)

H. F. Cui, L. Du, P. B. Guo, B. Zhu, J. H. Luong, J. Power Sources 283 (2015) 46 (https://doi.org/10.1016/j.jpowsour.2015.02.088)

Y. L. Kang, S. Ibrahim, S. Pichiah, Bioresour. Technol. 189 (2015) 364 (https://doi.org/10.1016/j.biortech.2015.04.044)

A. A. O. Sirajudeen, M. S. M. Annuar, R. Subramaniam, Biotechnol. Appl. Biochem. 00 (2020) 1 (https://doi.org/10.1002/bab.1928)

A. Baudler, I. Schmidt, M. Langner, A. Greiner, U. Schröder, Energy Environ. Sci. 8 (2015) 2048 (https://doi.org/10.1039/c5ee00866b)

T. Huggins, H. Wang, J. Kearns, P. Jenkins, Z. J. Ren, Bioresour. Technol. 157 (2014) 114 (https://doi.org/10.1016/j.biortech.2014.01.058)

S. H. Lee, J. Y. Ban, C. H. Oh, H. K. Park, S. Choi, Sci. Rep. 6 (2016) 28588 (https://doi.org/10.1038/srep28588)

T. Jafary, M. Ghasemi, J. Alam, S. A. Aljlil, S. Yusup, in Carbon-based polymer nanocomposites for environmental and energy applications, A. F. Ismail, P. S. Goh (Eds.), Elsevier, Amsterdam, 2018, pp. 361–390 (https://doi.org/10.1016/B978-0-12-813574-7.00015-0)

S. Li, C. Cheng, A. Thomas Adv. Mater. 29 (2017) 1602547 (https://doi.org/10.1002/adma.201602547)

A. Kaur, S. Ibrahim, C. J. Pickett, I. S. Michie, R. M. Dinsdale, A. J. Guwy, G. C. Premier, Sens. Actuators, B 201 (2014) 266 (https://doi.org/10.1016/j.snb.2014.04.062)

G. G. Kumar, C. J. Kirubaharan, S. Udhayakumar, K. Ramachandran, C. Karthikeyan, R. Renganathan, K. S. Nahrn, ACS Sustain. Chem. Eng. 2 (2014) 2283 (https://doi.org/10.1021/sc500244f)

X. H. Li, J. S. Qian, X. G. Guo, L. W. Shi, 3 Biotech. 8 (2018) 375 (https://doi.org/10.1007/s13205-018-1321-0)

K. B. Pu, Q. Ma, W. F. Cai, Q. Y. Chen, Y. H. Wang, F. J. Li, Biochem. Eng. J. 132 (2018) 255 (https://doi.org/10.1016/j.bej.2018.01.018)

X. Y. Wang, H. B. He, C. C. Zheng, Q. J. Guo, Particle Sci. Eng. 347 (2014) 62 (https://doi.org/10.1039/9781782627432-00062)

T. H. Han, N. Parveen, J. H. Shim, A. T. N. Nguyen, N. Mahato, M. H. Cho, Ind. Eng. Chem. Res. 57 (2018) 6705 (https://doi.org/10.1021/acs.iecr.7b05314)

Z. L. Li, S. K. Yang, Y. N. Song, H. Y. Xu, Z. Z. Wang, W. K. Wang, Y. Q. Zhao, Int. J. Hydrogen Energy 44 (2019) 6862 (https://doi.org/10.1016/j.ijhydene.2018.12.106)

M. Yellappa, J. S. Sravan, O. Sarkar, Y. V. R. Reddy, S. V. Mohan, Bioresour. Technol. 284 (2019) 148 (https://doi.org/10.1016/j.biortech.2019.03.085)

T. Yin, H. Zhang, G. Q. Yang, L. Wang, Synth. Met. 252 (2019) 8 (https://doi.org/10.1016/j.synthmet.2019.03.027)

S. N. J. S. Z. Abidin, M. S. Mamat, S. A. Rasyid, Z. Zainal, Y. Sulaiman, Electrochim. Acta 261 (2018) 548 (https://doi.org/10.1016/j.electacta.2017.12.168)

Q. Ma, K. B. Pu, W. F. Cai, Y. H. Wang, Q. Y. Chen, F. J. Li, Ind. Eng. Chem. Res. 57 (2018) 6633 (https://doi.org/10.1021/acs.iecr.8b00563)

N. Senthilkumar, M. Pannipara, A. G. Al-Sehemi, G. G. Kumar, New J. Chem. 43 (2019) 7743 (https://doi.org/10.1039/C9NJ00638A)

L. A. Hernandez, G. Riveros, D. M. Gonzalez, M. Gacitua, M. A. del Valle, J. Mater. Sci. Mater. Electron. 30 (2019) 12001 (https://doi.org/10.1007/s10854-019-01555-y)

H. R. Luckarift, S. R. Sizemore, K. E. Farrington, J. Roy, C. Lau, P. B. Atanassov, G. R. Johnson, ACS Appl. Mater. Interfaces 4 (2012) 2082 (https://doi.org/10.1021/am300048v)

A. Fraiwan, S. P. Adusumilli, D. Han, A. J. Steckl, D. F. Call, C. R. Westgate, S. Choi, Fuel Cells 14 (2014) 801 (https://doi.org/10.1002/fuce.201400041)

S. P. Jung, M. H. Yoon, S. M. Lee, S. E. Oh, H. Kang, J. K. Yang, Int. J. Electrochem. Sci. 9 (2014) 315

X. W. Liu, Y. X. Huang, X. F. Sun, G. P. Sheng, F. Zhao, S. G. Wang, H. Q. Yu, ACS Appl. Mat. Interf. 6 (2014) 8158 (https://doi.org/10.1021/am500624k)

L. Mottet, D. Le Cornec, J. M. Noel, F. Kanoufi, B. Delord, P. Poulin, N. Bremond, Soft Matter 14 (2018) 1434 (https://doi.org/10.1039/C7SM01929G)

G. G. Kumar, S. Hashmi, C. Karthikeyan, A. GhavamiNejad, M. Vatankhah-Varnoos¬faderani, F. J. Stadler, Macromol. Rapid Commun. 35 (2014) 1861 (https://doi.org/10.1002/marc.201400332)

J. Y. Chen, P. Xie, Z.P. Zhang, Chem. Eng. J. 361 (2019) 615 (https://doi.org/10.1016/j.cej.2018.12.116)

T. C. D. E. Silva, G. D. Bhowmick, M. M. Ghangrekar, M. Wilhelm, K. Rezwan, Biochem. Eng. J. 148 (2019) 29 (https://doi.org/10.1016/j.bej.2019.04.004)

B. E. Logan, Microbial fuel cells, John Wiley & Sons Ltd., New York, 2008, pp. 1–199 (https://doi.org/10.1002/9780470258590)

V. M. Ortiz-Martínez, M. J. Salar-García, F. J. Hernández-Fernández, A. De los Ríos, Energy 93 (2015) 1748 (https://doi.org/10.1016/j.energy.2015.10.027)

J. R. Kim, G. C. Premier, F. R. Hawkes, R. M. Dinsdale, A. J. Guwy, J. Power Sources 187 (2009) 393 (https://doi.org/10.1016/j.jpowsour.2008.11.020)

H. Liu, B.E. Logan, Environ. Sci. Technol. 38 (2004) 4040 (https://doi.org/10.1021/es0499344)

I. Gajda, J. Greenman, C. Santoro, A. Serov, C. Melhuish, P. Atanassov, I. A. Ieropoulos, Energy 144 (2018) 1073 (https://doi.org/10.1016/j.energy.2017.11.135)

A. Dicks, D.A.J. Rand, Fuel cell systems explained, John Wiley & Sons Ltd., New York, 2018, pp. 1–460 (https://doi.org/10.1002/9781118706992)

P. Mani, T. Keshavarz, T. S. Chandra, G. Kyazze, Enzyme Microb. Technol. 96 (2017) 170 (https://doi.org/ 10.1016/j.enzmictec.2016.10.012)

F. Zhao, F. Harnisch, U. Schröder, F. Scholz, P. Bogdanoff, I. Herrmann, Environ. Sci. Technol. 40 (2006) 5193 (https://doi.org/10.1021/es060332p)

S. Cheng, H. Liu, B.E. Logan, Environ. Sci. Technol. 40 (2006) 2426 (https://doi.org/10.1021/es051652w)

S. E. Oh, B. E. Logan, Appl. Microb. Biotechnol. 70 (2006) 162 (https://doi.org/10.1007/s00253-005-0066-y)

J. Ahmed, H.J. Kim, S. Kim, J. Electrochem. Soc. 159 (2012) B497 (https://doi.org/ 10.1149/2.049205jes)

F. Papiya, P. Pattanayak, P. Kumar, V. Kumar, P. P. Kundu, Electrochim. Acta 282 (2018) 931 (https://doi.org/10.1016/j.electacta.2018.07.024)

M. Lu, L. Guo, S. Kharkwal, H. Y. Ng, S. F. Y. Li, J. Power Sources 221 (2013) 381 (https://doi.org/10.1016/j.jpowsour.2012.08.034)

H. Yuan, L. Deng, J. Tang, S. Zhou, Y. Chen, Y. Yuan, ChemElectroChem 2 (2015) 1152 (https://doi.org/10.1002/celc.201500109)

A. Modi, S. Singh, N. Verma, Int. J. Hydrogen Energy 42 (2017) 3271 (https://doi.org/10.1016/j.ijhydene.2016.10.041)

H. R. Ong, C. W. Woon, M. S. Ahmad, A. Yousuf, C. K. Cheng, M. M. R. Khan, Int. J. Electrochem. Sci. 13 (2018) 7789 (https://doi.org/ 10.20964/2018.08.05)

H. Y. Li, H. Z. Ma, T. Liu, J. Ni, Q. H. Wang, Bioresour. Technol. 289 (2019) 121661 (https://doi.org/10.1016/j.biortech.2019.121661)

B. L. Liang, K. X. Li, Y. Liu, X. W. Kang, Chem. Eng. J. 358 (2019) 1002 (https://doi.org/10.1016/j.cej.2018.09.217)

M. Elangovan, S. Dharmalingam, J. Polym. Res. 23 (2016) 250 (https://doi.org/10.1007/s10965-016-1136-9)

M. Ghasemi, W. R. W. Daud, J. Alam, Y. Jafari, M. Sedighi, S. A. Aljlil, H. Ilbeygi, Int. J. Hydrogen Energy 41 (2016) 4862 (https://doi.org/10.1016/j.ijhydene.2015.10.029)

M. Ghasemi, W. R. W. Daud, J. Alam, H. Ilbeygi, M. Sedighi, A. F. Ismail, S. A. Aljlil, Energy 96 (2016) 303 (https://doi.org/10.1016/j.energy.2015.12.053)

P. N. Venkatesan, S. Dharmalingam, Renew. Energy 102 (2017) 77 (https://doi.org/10.1016/j.renene.2016.10.027)

S. Angioni, L. Millia, G. Bruni, C. Tealdi, P. Mustarelli, E. Quartarone, J. Power Sources 334 (2016) 120 (https://doi.org/10.1016/j.jpowsour.2016.10.014)

M. B. Bajestani, S.A. Mousavi, Int. J. Hydrogen Energy 41 (2016) 476 (https://doi.org/10.1016/j.ijhydene.2015.11.036)

V. Kumar, P. Kumar, A. Nandy, P. P. Kundu, RSC Adv. 6 (2016) 23571 (https://doi.org/10.1039/C6RA03598A)

G. Hernandez-Flores, H.M. Poggi-Varaldo, O. Solorza-Feria, Int. J. Hydrogen Energy 41 (2016) 23354 (https://doi.org/10.1016/j.ijhydene.2016.08.206)

T. Kim, S. Kang, J. H. Sung, Y. K. Kang, Y. H. Kim, J. K. Jang, J. Microbiol. Biotechnol. 26 (2016) 2171 (https://doi.org/10.4014/jmb.1608.08040)

H. Yusuf, M. S. M. Annuar, S. M. D. Syed Mohamed, R. Subramaniam, Chem. Eng. Commun. 206 (2018) 731 (https://doi.org/10.1080/00986445.2018.1521392)

A. A. O. Sirajudeen, M. S. M. Annuar, K. A. Ishak, Y. Hindatu, R. Subramaniam, J. Clean Prod. 278 (2021) 123449 (https://doi.org/10.1016/j.jclepro.2020.123449)

A. J. T. Harewood, S. R. Popuri, E. I. Cadogan, C. H. Lee, C. C. Wang, Int. J. Environ. Sci. Technol. 14 (2017) 1535 (https://doi.org/10.1007/s13762-017-1258-6)

S. L. Holder, C.H. Lee, S.R. Popuri, Environ. Sci. Pollut. Res. 24 (2017) 13782 (https://doi.org/10.1007/s11356-017-8839-2)

S. Zinadini, A. A. Zinatizadeh, M. Rahimi, V. Vatanpour, Z. Rahimi, Energy 125 (2017) 427 (https://doi.org/10.1016/j.energy.2017.02.146)

L. Di Palma, I. Bavasso, F. Sarasini, J. Tirillo, D. Puglia, F. Dominici, L. Torre, Eur. Polym. J. 99 (2018) 222 (https://doi.org/10.1016/j.eurpolymj.2017.12.037)

S. M. Daud, W. R. W. Daud, B. H. Kim, M. R. Somalu, M. H. Abu Bakar, A. Muchtar, I. S. Chang, Electrochim. Acta 259 (2018) 365 (https://doi.org/10.1016/j.electacta.2017.10.118)

V. Yousefi, D. Mohebbi-Kalhori, A. Samimi, Electrochim. Acta 283 (2018) 234 (https://doi.org/10.1016/j.electacta.2018.06.173)

F. J. Hernandez-Fernandez, A. de los Rios, F. Mateo-Ramirez, M. D. Juarez, L. J. Lozano-Blanco, C. Godinez, Sep. Purif. Technol. 160 (2016) 51 (https://doi.org/10.1016/j.seppur.2015.12.047)

V. Kumar, S. Mondal, A. Nandy, P. P. Kundu, Biochem. Eng. J. 111 (2016) 34 (https://doi.org/10.1016/j.bej.2016.03.003)

S. Angioni, L. Millia, G. Bruni, D. Ravelli, P. Mustarelli, E. Quartarone, J. Power Sources 348 (2017) 57 (https://doi.org/10.1016/j.jpowsour.2017.02.084)

A. Sivasankaran, D. Sangeetha, Y.H. Ahn, Chem. Eng. J. 289 (2016) 442 (https://doi.org/10.1016/j.cej.2015.12.095)

C. Li, L. Wang, X. D. Wang, M. X. Kong, Q. Zhang, G. Y. Li, J. Membrane Sci. 527 (2017) 35 (https://doi.org/10.1016/j.memsci.2016.12.065).

Most read articles by the same author(s)