Headspace gas chromatography-mass spectrometry method for the determination of total cyanide concentration in water and postmortem blood samples

Orhan Destanoğlu, İsmail Ateş


In this study, we aimed to develop a headspace gas chromatography-mass spectrometry method for determining the total cyanide concentration in the forensic evidences. Total cyanide content of the samples was calculated based on the hydrogen cyanide gas concentration evaporated from the liquid sample in the headspace vial. Hexacyanoferrate(II) was used for the optimi­za­ti­on of headspace oven temperature. We determined that iron-cyanide bonds were completely degraded after 0.2 mL of the sample was treated with 1 mL of 1 M sulfuric acid under the optimized headspace conditions where the temp­era­ture and the heating time were 120 °C and 12.5 min, respectively. Satisfactory recovery results for both aqueous and blood samples were obtained. The method was linear in the range 0.05 – 10 µg  ‾1 of cyanide which was a suitable range for toxicological investigations. The proposed method was validated and applied to the postmortem blood samples, drinking waters, and the other forensic evidences. The proposed method can easily be performed not only in the forensic laboratories, but in the related laboratories where the total cyanide analysis is a critical issue.


Analytical toxicology, cyanide poisoning, evidence, forensic chemistry

Full Text:

PDF (1,165 kB)


U.S. Environmental Protection Agency EPA/635/R-08/016F Toxicological Review Of Hydrogen Cyanide And Cyanide Salts, https://cfpub.epa.gov/ncea/iris/iris_documents/documents/toxreviews/0060tr.pdf, (accessed February 17th 2020)

S. Jickells, A. Negrusz, Clarke’s Analytical Forensic Toxicology, Pharmaceutical Press, London, UK, 2008, p. 111 (ISBN: 9780853697053)

H. Marquardt, S. Schäfer, R. O. McClellan, F. Welsch, Toxicology, 1st ed., Academic Press-Elsevier, Cambridge, United States, 1999, p. 851 (https://doi.org/10.1016/B978-012473270-4/50094-8)

A. E. Lindsay, A. R. Greenbaum, D. O’Hare, Anal. Chim. Acta 511 (2004) 185 (https://dx.doi.org/10.1016/j.aca.2004.02.006)

A. Zheng, D. A. Dzomba, R. G. Luthy, B. Sawyer, W. Lazouskas, P. Tata, M. F. Delaney, L. Zilitinkevitch, J. R. Sebroski, R. S. Swartling, S. M. Drop, J. M. Flaherty, Environ. Sci. Technol. 37 (2003) 107 (https://dx.doi.org/10.1021/es0258273)

O. Destanoğlu, G. Gümüş Yılmaz, R. Apak, J. Liq. Chromatogr. Relat. Technol. 38 (2015) 1537 (https://dx.doi.org/10.1080/10826076.2015.1076460)

O. Destanoğlu, G. Gümüş Yılmaz, J. Liq. Chromatogr. Relat. Technol. 39 (2016) 465 (https://dx.doi.org/10.1080/10826076.2016.1192044)

A. E. Lindsay, D. O’Hare, Anal. Chim. Acta 558 (2006) 158 (https://dx.doi.org/10.1016/j.aca.2005.11.036)

K. E. Murphy, M. M. Schantz, T. A. Butler, B. A. Benner, L. J. Wood, G. C. Turk, Clin. Chem. 52 (2006) 458 (https://dx.doi.org/10.1373/clinchem.2005.061002)

J. Ma, P. K. Dasgupta, Anal. Chim. Acta 673 (2010) 117 (https://dx.doi.org/10.1016/j.aca.2010.05.042)

A. Jain, A. K. K. V. Pillai, N. Sharma, K. K. Verma, Talanta 82 (2010) 758 (https://dx.doi.org/10.1016/j.talanta.2010.05.048)

L. Meng, X. Liu, B. Wang, G. Shen, Z. Wang, M. Guo, J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 877 (2009) 3645 (https://dx.doi.org/10.1016/j.jchromb.2009.09.006)

M. Aguilar, A. Farran, V. Martí, Fresenius J. Anal. Chem. 363 (1999) 121 (https://doi.org/10.1007/s002160051153)

A. M. Calafat, S. B. Stanfill, J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 772 (2002) 131 (https://dx.doi.org/10.1016/s1570-0232(02)00067-3)

B. Desharnais, G. Huppé, M. Lamarche, P. Mireault, C. D. Skinner, Forensic Sci. Int. 222 (2012) 346 (https://dx.doi.org/10.1016/j.forsciint.2012.06.017)

G. Liu, J. Liu, K. Hara, Y. Wang, Y. Yu, L. Gao, L. Li, J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 877 (2009) 3054 (https://dx.doi.org/10.1016/j.jchromb.2009.07.029)

R. K. Bhandari, R. P. Oda, S. L. Youso, I. Petrikovics, V. S. Bebarta, G. A. Rockwood, B. A. Logue, Anal. Bioanal. Chem. 404 (2012) 2287 (https://dx.doi.org/10.1007/s00216-012-6360-5)

S. Kage, T. Nagata, K. Kudo, J. Chromatogr. B. Biomed. Appl. 675 (1996) 27 (https://dx.doi.org/10.1016/0378-4347(95)00344-4)

A. A. Cárdenas Riojas, A. Wong, G. A. Planes, M. D. P. T. Sotomayor, A. La Rosa-Toro, A. M. Baena-Moncada, Sensors Actuators B. Chem. 287 (2019) 544 (https://dx.doi.org/10.1016/j.snb.2019.02.053)

L. Zhang, H. H. Quan, K. Yang, M. Li, C. P. Chen, J. H. Ahn, J. Hahn, Sensors Actuators B. Chem. 259 (2018) 926 (https://dx.doi.org/10.1016/j.snb.2017.12.143)

A. Yari, R. Sepahvand, Microchim. Acta 174 (2011) 321 (https://dx.doi.org/10.1007/s00604-011-0629-9)

M. L. Koskinen-Soivi, E. Leppämäki, P. Stahlberg, Anal. Bioanal. Chem. 381 (2005) 1625 (https://dx.doi.org/10.1007/s00216-005-3129-0)

C. Zhang, H. Zheng, J. Ouyang, S. Feng, Y. E. C. Taes, Anal. Lett. 38 (2005) 247 (https://dx.doi.org/10.1081/AL-200045143)

A. J. Curtis, C. C. Grayless, R. Fall, Analyst 127 (2002) 1446 (https://dx.doi.org/10.1039/b205378k)

G. Roda, S. Arnoldi, M. D. Cas, V. Ottaviano, E. Casagni, F. Tregambe, G. L. Visconti, F. Farè, R. Froldi, V. Gambaro, J. Anal. Toxicol. 42 (2018) e51 (https://dx.doi.org/10.1093/jat/bky015)

D. Marton, A. Tapparo, V. B. Di Marco, C. Repice, C. Giorio, S. Bogialli, J. Chromatogr. A 1300 (2013) 209 (https://dx.doi.org/10.1016/j.chroma.2013.03.004)

V. Gambaro, S. Arnoldi, E. Casagni, L. Dell’Acqua, C. Pecoraro, R. Froldi, J. Forensic Sci. 52 (2007) 1401 (https://dx.doi.org/10.1111/j.1556-4029.2007.00570.x)

M. Shibata, K. Inoue, Y. Yoshimura, H. Nakazawa, Y. Seto, Arch. Toxicol. 78 (2004) 301 (https://dx.doi.org/10.1007/s00204-004-0545-4)

Y. Seto, N. Tsunoda, H. Ohta, T. Shinohara, Anal. Chim. Acta 276 (1993) 247 (https://dx.doi.org/10.1016/0003-2670(93)80391-W)

G. Nota, V. R. Maraglia, C. Improta, A. Acampora, J. Chromatogr. A 207 (1981) 47 (https://dx.doi.org/10.1016/S0021-9673(00)82691-6)

P. Boadas-Vaello, E. Jover, J. Llorens, J. M. Bayona, J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 870 (2008) 17 (https://dx.doi.org/10.1016/j.jchromb.2008.05.031)

S. Jermak, B. Pranaityte, A. Padarauskas, Electrophoresis 27 (2006) 4538 (https://dx.doi.org/10.1002/elps.200600295)

L.-L. Løbger, H. W. Petersen, J. E. T. Andersen, Anal. Lett. 41 (2008) 2564 (https://dx.doi.org/10.1080/00032710802363248)

P. Dumas, G. Gingras, A. LeBlanc, J. Anal. Toxicol. 29 (2005) 71 (https://dx.doi.org/10.1093/jat/29.1.71)

G. Frison, F. Zancanaro, D. Favretto, S. D. Ferrara, Rapid Commun. Mass Spectrom. 20 (2006) 2932 (https://dx.doi.org/10.1002/rcm.2689)

Republic of Turkey, Ministry of Environment and Urbanisation - Regulation of the registration, evaluation, permission and restriction of chemicals, https://www.resmigazete.gov.tr/eskiler/2019/11/20191129-4.htm (accessed September 8th 2020)

Eurachem The Fitness for Purpose of Analytical Methods; A Laboratory Guide to Method Validation and Related Topics, https://www.eurachem.org/index.php/publications/guides/mv, (accessed January 23th 2019)

Appendix F: Guidelines for Standard Method Performance Requirements, in AOAC official methods of analysis, http://www.eoma.aoac.org/app_f.pdf, (accessed January 23th 2019)

DOI: https://doi.org/10.2298/JSC200422063D

Copyright (c) 2020 Journal of the Serbian Chemical Society

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

5 Year Impact Factor 1.023
138 of 177 journals)