Investigation of selective leaching conditions of ZnO, ZnFe2O4 and Fe2O3 in electric arc furnace dust in HNO3 Scientific paper

Main Article Content

Mert Zoraga
https://orcid.org/0000-0002-7723-728X
Tugba Yucel
https://orcid.org/0000-0002-0374-4895
Sedat Ilhan
https://orcid.org/0000-0001-9976-0955
Ahmet Orkun Kalpakli
https://orcid.org/0000-0002-8382-4085

Abstract

Electric arc furnace dust (EAFD) includes mainly Zn, Fe, Pb, Ca and Mn-bearing compounds. Thus, EAFD is classified as a hazardous waste. The dis­solution behavior of Zn- and Fe-bearing compounds in EAFD in nitric acid solutions was investigated in this work. The composition of Zn- and Fe-bearing compounds in the EAFD was determined as 28.58, 37.96 and 11.33 % for ZnO, ZnFe2O4 and Fe2O3, respectively. The effect of stirring speed, temperature and HNO3 concentration on the dissolution rate of ZnO, ZnFe2O4 and Fe2Owere investigated and optimum leaching conditions determined. While ZnO was dis­solved rapidly, the dissolution rate of ZnFe2O4 increased with increasing tem­pe­rature and HNO3 concentration. Fe2O3 was not soluble in 0.5 M HNO3 solut­ion at 40 °C, whereas it was dissolved completely in 4 M HNO3 solution at 80 °C.

Downloads

Metrics

PDF views
347
Feb 19 '22Feb 22 '22Feb 25 '22Feb 28 '22Mar 01 '22Mar 04 '22Mar 07 '22Mar 10 '22Mar 13 '22Mar 16 '22Mar 19 '225.0
| |

Article Details

How to Cite
[1]
M. Zoraga, T. Yucel, S. Ilhan, and A. O. Kalpakli, “Investigation of selective leaching conditions of ZnO, ZnFe2O4 and Fe2O3 in electric arc furnace dust in HNO3: Scientific paper”, J. Serb. Chem. Soc., vol. 87, no. 3, pp. 377–388, Feb. 2022.
Section
Metallic Materials and Metallurgy

References

P. Oustadakis, P. E. Tsakiridis, A. Katsiapi, S. Agatzini–Leonardou , J. Hazard. Mater. 179 (2010) 1 (https://doi.org/10.1016/j.jhazmat.2010.01.059)

T. Havlik, M. Turzakova, S. Stopic, B. Friedrich, Hydrometallurgy 77 (2005) 41 (https://doi.org/10.1016/j.hydromet.2004.10.008)

The Union of Chambers and Commodity Exchanges of Turkey, Turkish Ferrous and Nonferrous Metals Council Report, 2016, https://www.tobb.org.tr/Documents/yayinlar/EkonomikRapor/Eng/2017%20Economic%20Report.pdf (accessed 23/10/2018)

T. Havlík, B. De Souza, A. M. Bernardes, I.A.H. Schneider, A. Miškufová, J. Hazard. Mater. 135 (2006) 311 (https://doi.org/10.1016/j.jhazmat.2005.11.067)

J. R. Donald, C. A. Pickles, Can. Metall. Q. 35 (1996) 255 (https://doi.org/10.1016/0008-4433(96)00009-2)

N. Štrbac, I. Mihajlović, V. Andrić, Ž. Živković, A. Rosić, Can. Metall. Q. 50 (2011) 28 (https://doi.org/10.1179/000844311X552287)

M. H. Morcali, O. Yucel, A. Aydin, B. Derin, J. Min. Metal. 48 (2012) 173 (https://doi.org/10.2298/JMMB111219031M)

X. Lina, Z. Penga, J. Yana, Z. Li, J.Y. Hwang, Y. Zhang, G. Li, J. Clean. Prod. 149 (2017) 1079 (https://doi.org/10.1016/j.jclepro.2017.02.128)

V. N. R. Sarma, K. Deo, A. K. Biswas, Hydrometallurgy 2 (1976) 171 (https://doi.org/10.1016/0304-386X(76)90026-8)

M. Cruells, A. Roca, C. Núnẽz, Hydrometallurgy 32 (1992) 213 (https://doi.org/10.1016/0304-386X(92)90119-K)

C. Caravaca, A. Cobo, F. J. Alguacil, Resour. Conserv. Recycl. 10 (1994) 35 (https://doi.org/10.1016/0921-3449(94)90036-1)

D. K. Xia, C. A. Picklesi, Miner. Eng. 13 (2000) 79 (https://doi.org/10.1016/S0892-6875(99)00151-X)

Z. Youcai, R. Stanforth, Miner. Eng. 13 (2000) 1417 (https://doi.org/10.1016/S0892-6875(00)00123-0)

N. Leclerc, E. Meux, J. M. Lecuire, Hydrometallurgy 70 (2003) 175 (https://doi.org/10.1016/S0304-386X(03)00079-3)

T. Havlik, B. Friedrich, S. Stopic, World Metal. – ERZMETALL 57 (2004) 83 (http://www.metallurgie.rwth-aachen.de/new/images/pages/publikationen/havlik_erzmetall_57_id_9401.pdf)

S. Kelebek, S. Yoruk, B. Davis, Miner. Eng. 17 (2004) 285 (https://doi.org/10.1016/j.mineng.2003.10.030)

G. Orhan, Hydrometallurgy 78 (2005) 236 (https://doi.org/10.1016/j.hydromet.2005.03.002)

A. J. B. Dutra, P. R. P. Paiva, L. M. Tavares, Miner. Eng. 19 (2006) 478 (https://doi.org/10.1016/j.mineng.2005.08.013)

R. A. Shawabkeh, Hydrometallurgy 104 (2010) 61 (https://doi.org/10.1016/j.hydromet.2010.04.014)

F. Kukurugya, T. Vindt, T. Havlík, Hydrometallurgy 154 (2015) 20 (https://doi.org/10.1016/j.hydromet.2015.03.008)

N. Peng, B. Peng, H. Liu, D. H. Lin, K. Xue, Can. Metall. Q. 56 (2017) 301 (https://doi.org/10.1080/00084433.2017.1343174)

R. L. Nyirenda, Miner. Eng. 4 (1991) 1003 (https://doi.org/10.1016/0892-6875(91)90080-F).

B. Boyanov, A. Peltekov, K. Ivanov, Int. J. Chem. Mol. Eng. 9 (2015) 765 (https://publications.waset.org/10002705/pdf)

Š. Langová, J. Riplová, S. Vallová, Hydrometallurgy 87 (2007) 157 (https://doi.org/10.1016/j.hydromet.2007.03.002)

Z. Sedláková, D. Orac, T. Havlik, Acta Metall. Slovaca 12 (2006) 338 (https://www.censo.fmmr.tuke.sk/content/clanky/200606.pdf)

T. Havlik, F. Kukurugya, D. Orac, L. Parilak, World Metal. – ERZMETALL 65 (2012) 48 (https://www.researchgate.net/publication/279701830_Acidic_leaching_of_EAF_steelmaking_dust)

M. C. Da Silva, A. M. Bernardes, C. P. Bergmann, J. A. S. Tenório, D. C. R. Espinosa, Ironmak. Steelmak. 35 (2008) 315 (https://doi.org/10.1179/030192307X232936).