Experimental study of single walled carbon nanotube / water nanofluid effect on a two-phase closed thermosyphon performance

Bahareh Kamyab Moghadas, Mohammad Chehrazi

Abstract


Thermosyphons are one of the most efficient heat exchanger appa­ra­tus that are used extensively in different industries. One of the most common uses of this device is energy recovery, which is essential due to the energy crisis. Several parameters, such as geometric dimensions, type of working fluid, type of thermosyphon's body, affect a thermosyphon efficiency. In this experiment, the effect of type and concentration of single-walled carbon nanotube nanofluid (SWCNT / Water) on heat transfer efficiency in a two-phase closed thermosyphon (TPCT) has been investigated. For this purpose, a system with a two-phase closed thermosyphon was initially constructed. Then SWCNT / water nanofluids at 0.2, 0.5 and 1 % weight concentration were used as a working fluid in the thermosyphon system. The results of current ex­pe­ri­ments showed that the addition of nanofluid with any weight concen­tra­tion and the increase of input power increases the performance of the system. Also, the heat resistance of TPCT reduced when the level of SWCNT and input power increased. So, for prepared nanofluid's samples, minimum thermal resistance obtained at 1 wt.% SWCNT and 120 W. Also, the Nusselt number increased with raising the input power and decreased with increasing the concentration. In all experiments, all prepared nanofluid samples have signi­ficantly better thermal performance in comparison with pure water.


Keywords


energy recovery, swcnt / water-based nanofluid, efficiency, thermal resistance, TPCT

Full Text:

PDF (1,072 kB)

References


M. Ramezanizadeh, M. A. Nazari, M. H. Ahmadi, E. Açıkkalp, J. Mol. Liq. 272 (2018) 395 (https://doi.org/10.1016/j.molliq.2018.09.101)

H. Karami, S. Papari-Zare, M. Shanbedi, H. Eshghi, A. Dashtbozorg, A. Akbari, C. B. Teng, Int. Commun. Heat Mass 108 (2019) 104302 (https://doi.org/10.1016/j.icheatmasstransfer.2019.104302)

A. O. Borode, N.A. Ahmed, P. A. Olubambi, Nano-Structures & Nano-Objects 20 (2019) 100394 (https://doi.org/10.1016/j.nanoso.2019.100394)

E. Živković, S. Kabelac, S. Šerbanović, J. Serb. Chem. So.c 74 (2009) 427 (https://doi.org/10.2298/JSC0904427Z)

S. U. Choi, J. A. Eastman, International Mechanical Engineering Congress and Exposition, San Francisco, (1995), CA, Enhancing Thermal Conductivity of Fluids with Nanoparticles, 12

H. U. Kang, S. H. Kim, J. M. Oh, Exp. Heat Transf. 19 (2006) 181 (https://doi.org/10.1080/08916150600619281)

L. Godson, B. Raja, D. M. Lal, S. Wongwises, Exp. Heat Transf. 23 (2010) 317 (https://doi.org/10.1080/08916150903564796)

H. R. Goshayeshi, M. R. Safaei, M. Goodarzi, M. Dahari, Powder Technol. 301 (2016) 1218 (https://doi.org/10.1016/j.powtec.2016.08.007)

S. Zeinali Heris, M. N. Esfahani, G. Etemad, J. Enhanc. Heat Transf. 13 (2006) 279 (https://doi.org/10.1615/JEnhHeatTransf.v13.i4.10)

S. Zeinali Heris, G. Etemad, M. Nasr Esfahany, Int. Commun. Heat Mass 33 (2006) 529 (https://doi.org/10.1016/j.icheatmasstransfer.2006.01.005)

S. Zeinali Heris, M. Nasr Esfahany, G. Etemad, Int. J. Heat Fluid Fl. 28 (2007) 203 (https://doi.org/10.1016/j.ijheatfluidflow.2006.05.001)

S. H. Noie, S. Zeinali Heris, M. Kahani, S. M. Nowee, Int. J. Heat Fluid Fl. 30 (2009) 700 (https://doi.org/10.1016/j.ijheatfluidflow.2009.03.001)

S. W. Kang, W. C. Wei, S. H. Tsai, S. Y. Yang, Appl. Therm. Eng. 26 (2006) 2377 (https://doi.org/10.1016/j.applthermaleng.2006.02.020)

H. J. Jia, L. Jia, Z. Tau, J. Тherm. Sci. 22 (2013) 484 (https://doi.org/10.1021/ma302119t)

Q. Xu, L. Liu, J. Feng, L. Qiao, Ch. Yu, W. Shi, Ch. Ding, Y. Zang, Ch. Chang, Y. Xiong, Y. Ding, Int. J. Heat Mass Transf. 149 (2020) 119189 (https://doi.org/10.1007/s11630-020-1273-7)

S. Das, A. Giri, S. Samanta, Energ. Source Part A (2020) 1 (https://doi.org/10.1080/15567036.2020.1727998)

S. Berber, Y. K. Kwon, D. Tomanek, Phys. Рev. Lett. 84 (2000) 4613 (https://doi.org/10.1103/PhysRevLett.84.4613)

Z. H. Liu, X. F. Yang, G. S. Wang, G. L. Guo, Int. J. Heat Mass Transf. 53 (2010) 1914 (https://doi.org/10.1016/j.ijheatmasstransfer.2009.12.065)

S. U. Choi, Z. G. Zhang, W. Yu, F. E. Lockwood, E. A. Grulke, Appl. Phys. Lett, 79 (2001) 2252 (https://doi.org/10.1063/1.1408272)

M. Shanbedi, S. Zeinali Heris, M. Baniadam, A. Amiri, Exp. Heat Transf. 26 (2013) 26 (https://doi.org/10.1080/08916152.2011.631078)

M. T. Pettes, L. Shi, Adv. Funct. Mater 19 (2009) 3918 (https://doi.org/10.1002/adfm.200900932)

D. Wen, Y. Ding, J. Thermophys. Heat Tr. 18 (2004) 481 (https://doi.org/10.2514/1.9934)

Y. Yang, E. A. Grulke, Z. G. Zhang, G. Wu, J. Appl. Phys. 99 (2006) 114307. (https://doi.org/10.1063/1.2193161)

S. H. Noie, Appl. Thermal Eng. 25 (2005) 495 (https://doi.org/10.1016/j.applthermaleng.2004.06.019)

S. Maki, T. Tagawa, H. Ozoe, J. Heat Transf. 124 (2002) 667 (https://doi.org/10.1115/1.1482082)

H. Salehi, S. Zeinali Heris, S. H. Noie, J. Enhanced Heat Transf. 18 (2011) 261 (https://doi.org/10.1615/JEnhHeatTransf.v18.i3.70)

Q. Z. Xue, Physica B 368 (2005) 302 (https://doi.org/10.1016/j.physb.2005.07.024)

S. Khandekar, Y. M. Joshi, B. Mehta, Int. J. Ther.l Sci. 47 (2008) 659 (https://doi.org/10.1016/j.ijthermalsci.2007.06.005)

J. D. Holman, Experimental Methods for Engineers, 5th ed., Ch. 3, McGraw-Hill, New York,1989.

H. Sardarabadi, S. Z. Heris, A. Ahmadpour, M. Passandideh-Fard, Energ. Convers. Manage. 188 (2019) 321 (https://doi.org/10.1016/j.enconman.2019.03.070)

M. M. Sarafraz, I. Tlili, Z. Tian, M. Bakouri, M. R. Safaei, Physica A 534 (2019) 122146 (https://doi.org/10.1016/j.physa.2019.122146)

C. Li, Z. Wang, P. Wang, Y. Peles, N. Koratkar, G. P. Peterson, Small 4 (2008) 1084 (https://doi.org/10.1002/smll.200700991)

S. J. Kim, I. C. Bang, J. Buongiorno, L. W. Hu, Int. J. Heat Mass Transf. 50 (2007) 4105 (https://doi.org/10.1016/j.ijheatmasstransfer.2007.02.002).




DOI: https://doi.org/10.2298/JSC200628070C

Copyright (c) 2020 Journal of the Serbian Chemical Society

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 1.097
5 Year Impact Factor 1.023
(
138 of 177 journals)