Catalytic center of cytochrome c oxidase: Effects of protein environment on the pKa values of CuB histidine ligands

Main Article Content

Dragan M. Popović
http://orcid.org/0000-0001-6776-7271
Ivana S. Đorđević
http://orcid.org/0000-0001-5981-9385

Abstract

The molecular mechanism by which electron transfer (ET) is coupled to proton pumping in cytochrome oxidase is one of the main unsolved prob­lems in biochemistry. Particularly, the nature and position of the proton-load­ing site is under dispute. The CuB complex has three ligated histidines, whereas only His290 and His291 are ionizable sites with the same pKa values in aque­ous solution, but apparently quite different ones within the enzyme. Earlier, a model of proton pumping with the central role of His290 was proposed. Recent calculations indicate that the His291 ligand of the CuB center might play the role of the pumping element, since its protonation state depends on the oxid­ation state of the binuclear complex (BNC). The present electrostatic study was applied to assess the role of the protein environment on the acidity of the two histidines. Their pKa values and effects of different energy terms were evalu­ated to discover the nature of their diverse behavior in the enzyme. Here, a new set of pKa values for the non-standard model compounds within the BNC was applied. The enhanced results are compared with results of previous studies in the light of the plausible proton pumping mechanism. The obtained micro­scopic and apparent pKa values in the oxidized state of BNC are virtually the same, indicating that deprotonated form of His291 accounts for the large pKa increase of His290, since then both titratable sites on then CuB center cannot simultaneously be in the charged state. The present results support the under­lined His291 pumping model.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
D. M. Popović and I. S. Đorđević, “Catalytic center of cytochrome c oxidase: Effects of protein environment on the pKa values of CuB histidine ligands”, J. Serb. Chem. Soc., vol. 85, no. 11, pp. 1429–1444, Nov. 2020.
Section
Inorganic Chemistry
Author Biographies

Dragan M. Popović, University of Belgrade – Institute of Chemistry, Technology and Metallurgy – National Institute of the Republic of Serbia, Njegoseva 12, 11000 Belgrade, Serbia

Department of Chemistry, IChTM, University of Belgrade

Associate Research Professor

Ivana S. Đorđević, University of Belgrade – Institute of Chemistry, Technology and Metallurgy – National Institute of the Republic of Serbia, Njegoseva 12, 11000 Belgrade, Serbia

Department of Chemistry, IChTM, University of Belgrade

Assistent Research Professor

References

M. Wikström, K. Krab, V. Sharma, Chem. Rev. 118 (2018) 2469 (https://doi.org/10.1021/acs.chemrev.7b00664)

J. P. Shapleigh, J. P. Hosler, M. M. J. Tecklenburg, Y. Kim, G. T. Babcock, R. B. Gennis, S. Ferguson-Miller, Proc. Natl. Acad. Sci. USA 89 (1992) 4786 (https://doi.org/10.1073/pnas.89.11.4786)

J. P. Hosler, S. Ferguson-Miller, D. A. Mills, Ann. Rev. Biochem. 75 (2006) 165 (https://doi.org/10.1146/annurev.biochem.75.062003.101730).

L. Qin, J. Liu, D. A. Mills, D. A. Proshlyakov, C. Hiser, S. Ferguson-Miller, Biochemistry 48 (2009) 5121 (https://doi.org/10.1021/bi9001387)

A. A. Konstantinov, S. Siletsky, D. Mitchell, A. Kaulen, R. B. Gennis, Proc. Natl. Acad. Sci. USA 94 (1997) 9085 (https://doi.org/10.1073/pnas.94.17.9085).

A. K. L. Dürr, J. Koepke, P. Hellwig, H. Müller, H. Angerer, G. Peng, E. Olkhova, O. M. H. Richter, B. Ludwig, H. Michel, J. Mol. Biol. 384 (2008) 865 (https://doi.org/10.1016/j.jmb.2008.09.074)

S. Yoshikawa, K. Shinzawa-Itoh, R. Nakashima, R. Yaono, E. Yamashita, N. Inoue, M. Yao, M. J. Fei, C. P. Libeu, T. Mizushima, H. Yamaguchi, T. Tomizaki, T. Tsukihara, Science 280 (1998) 1723 (http://science.sciencemag.org/content/280/5370/1723)

A. M. Svensson-Ek, J. Abramson, G. Larsson, S. Tornroth, P. Brzezinski, S. Iwata, J. Mol. Biol. 321 (2002) 329 (https://doi.org/10.1016/S0022-2836(02)00619-8)

T. Tsukihara, K. Shimokata, Y. Katayama, H. Shimada, K. Muramoto, H. Aoyama, M. Mochizuki, K. Shinzawa-Itoh, E. Yamashita, M. Yao, Y. Ishimura, S. Yoshikawa, Proc. Natl. Acad. Sci. USA 100 (2003) 15304 (https://doi.org/10.1073/pnas.2635097100)

N. Yano, K. Muramoto, A. Shimada, S. Takemura, J. Baba, H. Fujisawa, M. Mochizuki, K. Shinzawa-Itoh, E. Yamashita, T. Tsukihara, S. Yoshikawa, J. Biol. Chem. 291 (2016) 23882 (https://www.jbc.org/content/291/46/23882)

H. Michel, Proc. Natl. Acad. Sci. USA 95 (1998) 12819 (https://doi.org/10.1073/pnas.95.22.12819)

T. K. Das, C. M. Gomes, M. Teixeira, D. L. Rousseau, Proc. Natl. Acad. Sci. USA 96 (1999) 9591 (ttps://doi.org/10.1073/pnas.96.17.9591).

M. Wikström, Biochim. Biophys. Acta 1458 (2000) 188 (https://doi.org/10.1016/S0005-2728(00)00068-2)

D. M. Popovic, A. A. Stuchebrukhov, J. Am. Chem. Soc. 126 (2004) 1858 (https://doi.org/10.1021/ja038267w)

K. Faxen, G. Gilderson, P. Ädelroth, P. Brzezinski, Nature 437 (2005) 286 (https://doi.org/10.1038/nature03921)

Y. Song, E. Michonova-Alexova, M. R. Gunner, Biochemistry 45 (2006) 7959 (https://doi.org/10.1021/bi052183d)

M. A. Sharpe, S. Ferguson-Miller, J. Bioenerg. Biomembr. 40 (2008) 541 (https://doi.org/10.1007/s10863-008-9182-6).

J. A. Fee, D. A. Case, L. Noodleman, J. Am. Chem. Soc. 130 (2008) 15002 (https://doi.org/10.1021/ja803112w)

S. A. Siletsky, A. A. Konstantinov, Biochim. Biophys. Acta 1817 (2012) 476 (https://doi.org/10.1016/j.bbabio.2011.08.003)

I. Belevich, D. A. Bloch, N. Belevich, M. Wikström, M. I. Verkhovsky, Proc. Natl. Acad. Sci. USA 104 (2007) 2685 (https://doi.org/10.1073/pnas.0608794104)

S. Han, S. Takahashi, D. L. Rousseau, J. Biol. Chem. 275 (2000) 1910 (https://doi.org/10.1074/jbc.275.3.1910)

M. Wikström, Biochim. Biophys. Acta 1655 (2004) 241 (https://doi.org/10.1016/j.bbabio.2003.07.013)

P. Brzezinski, R. B. Gennis, J. Bioenergy Biomembr. 40 (2008) 521 (https://doi.org/10.1007/s10863-008-9181-7)

C. M. Soares, A. M. Baptista, M. M. Pereira, M. Teixeira, J. Biol. Inorg. Chem. 9 (2004) 124 (https://doi.org/10.1007/s00775-003-0509-9)

D. M. Popovic, I. V. Leontyev, D. G. Beech, A. A. Stuchebrukhov, Proteins Struct. Funct. Bioinform. 78 (2010) 2691 (https://doi.org/10.1002/prot.22783)

D. M. Popovic, Amino Acids 45 (2013) 1073 (https://doi.org/10.1007/s00726-013-1585-y)

W.-G. Han Du, A. W. Götz, L. Noodleman, Inorg. Chem. 57 (2018) 1048 (https://doi.org/10.1021/acs.inorgchem.7b02461)

D. M. Popovic, A. A. Stuchebrukhov, FEBS Letters 566 (2004) 126 (https://doi.org/10.1016/j.febslet.2004.04.016)

D. M. Popovic, A. A. Stuchebrukhov, J. Phys. Chem., B 109 (2005) 1999 (https://doi.org/10.1021/jp0464371)

D. M. Popovic, J. Quenneville, A. A. Stuchebrukhov, J. Phys. Chem., B 109 (2005) 3616 (https://doi.org/10.1021/jp046535m)

J. Quenneville, D. M. Popovic, A. A. Stuchebrukhov, Biochim. Biophys. Acta 1757 (2006) 1035 (https://doi.org/10.1016/j.bbabio.2005.12.003)

D. M. Popovic, A. A. Stuchebrukhov, Biochim. Biophys. Acta 1817 (2012) 506 (https://doi.org/10.1016/j.bbabio.2011.10.013)

D. M. Popovic, A. A. Stuchebrukhov, Photochem. Photobiol. Sci. 5 (2006) 611 (https://doi.org/10.1039/B600096G)

D. Bashford, K. Gerwert, J. Mol. Biol. 224 (1992) 473 (https://doi.org/10.1016/0022-2836(92)91009-E)

D. Bashford, Scientific Computing in Object-Oriented Parallel Environments, Springer, Berlin, 1997, p. 233 (https://www.springer.com/gp/book/9783540638278)

M. R. Gunner, B. Honig, Proc. Natl. Acad. Sci. USA 88 (1991) 9151 (https://doi.org/10.1073/pnas.88.20.9151)

A.-S. Yang, M. R. Gunner, R. Sompogna, B. Honig, Prot. Struct. Funct. Gen. 15 (1993) 252 (https://doi.org/10.1002/prot.340150304)

D. Bashford, D. A. Case, C. Dalvit, L. Tennant, P. E. Wright, Biochemistry 32 (1993) 8045 (https://doi.org/10.1021/bi00082a027)

P. Beroza, D. R. Fredkin, J. Comput. Chem. 17 (1996) 1229 (https://doi.org/10.1002/(SICI)1096-987X(19960730)17:10<1229::AID-JCC4>3.0.CO;2-Q)

J. Antosiewicz, J. M. Briggs, A. H. Elcock, M. K. Gilson, J. A. McCammon, J. Comput. Chem. 17 (1996) 1633 (https://doi.org/10.1002/(SICI)1096-987X(19961115)17:14<1633::AID-JCC5>3.0.CO;2-M)

J. Li, M. R. Nelson, C. Y. Peng, D. Bashford, L.Noodleman, J. Phys. Chem., A 102 (1998) 6311 (https://doi.org/10.1021/jp980753w)

A. Warshel, A. Papazyan, Curr. Opin. Struct. Biol. 8 (1998) 211 (https://doi.org/10.1016/S0959-440X(98)80041-9)

P. J. Martel, C. M. Soares, A. M. Baptista, M. Fuxreiter, G. Naray-Szabo, R. O. Louro, M. A. Carrondo, J. Biol. Inorg. Chem. 4 (1999) 73 (https://doi.org/10.1007/s007750050291)

D. M. Popovic, A. Zmiric, S. D. Zaric, E. W. Knapp, J. Am. Chem. Soc. 124 (2002) 3775 (https://doi.org/10.1021/ja016249d)

J. Quenneville, D. M. Popovic, A. A. Stuchebrukhov, J. Phys. Chem., B 108 (2004) 18383 (https://doi.org/10.1021/jp0467797)

D. M. Popovic, S. D. Zaric, B. Rabenstein, E. W. Knapp, J. Am. Chem. Soc. 123 (2001) 6040 (https://doi.org/10.1021/ja003878z)

V. Couch, D. Popovic, A. A. Stuchebrukhov, Biophys. J. 101 (2011) 431 (https://doi.org/10.1016/j.bpj.2011.05.068)

D. S. Cerutti, N. A. Baker, J. A. McCammon, J. Chem. Phys. 127 (2007) 155101 (https://doi.org/10.1063/1.2771171)

D. V. Makhov, D. M. Popovic, A. A. Stuchebrukhov, J. Phys. Chem., B 110 (2006) 12162 (https://doi.org/10.1021/jp0608630).