Microwave-assisted synthesis of 1,2,3,4-tetrahydroisoquinoline sulfonamide derivatives and their biological evaluation

Main Article Content

Stanimir Manolov
https://orcid.org/0000-0002-0314-6553
iliyan Ivanov
https://orcid.org/0000-0002-4662-3735
Dimitar Bojilov
https://orcid.org/0000-0001-6569-8348

Abstract

Herein we report an alternative eco-friendly method for the synthesis of 1,2,3,4-tetrahydroisoquinoline sulfonamide derivatives. All obtained com­pounds were screened for their in vitro inhibition of albumin denaturation, antioxidant, antitryptic and antibacterial activity, and have shown significant results. The lipophilicity was established using both reversed-phase thin layer chromatography and in silico calculations.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
S. Manolov, iliyan Ivanov, and D. Bojilov, “Microwave-assisted synthesis of 1,2,3,4-tetrahydroisoquinoline sulfonamide derivatives and their biological evaluation”, J. Serb. Chem. Soc., vol. 86, no. 2, pp. 139–151, Mar. 2021.
Section
Biochemistry & Biotechnology

References

R. N. Shelke, D. N. Pansare, A. P. Sarkate, I. K. Narula, D. K. Lokwani, S. V Tiwari, R. Azad, S. R. Thopate, Bioorg. Med. Chem. Lett. 30 (2020) 127246 (https://doi.org/10.1016/j.bmcl.2020.127246)

R. Pingaew, P. Mandi, C. Nantasenamat, S. Prachayasittikul, S. Ruchirawat, V. Prachayasittikul, Eur. J. Med. Chem. 81 (2014) 192 (https://doi.org/10.1016/j.ejmech.2014.05.019)

G. Blaskó, P. Kerekes, S. Makleit, Reissert Synthesis of Isoquinoline and Indole Alkaloids in The Alkaloids: Chemistry and Pharmacology, A. Brossi (Ed.), Elsevier, Academic Press, New York, 1987, p. 1 (https://doi.org/10.1016/S0099-9598(08)60256-4)

M. Shamma, in The Isoquinoline Alkaloids. Chemistry and Pharmacology, Academic Press, New York, 1972, p. 595 (https://doi.org/10.1016/B978-0-12-638250-1.50040-X)

G. Jones, in Comprehensive Heterocyclic Chemistry II, A. R. Katritzky, C. V. Rees, E. F. V. Scriven (Eds.), Pergamon Press, Elsevier Sci. Ltd., New York, 1997 (https://doi.org/10.1021/jm9706123)

R. Kreher, S. Andreae, S. von Angerer, P. Czerney, H. Hartmann, M. A. Kessler, E. Reimann, W.-D. Rudorf, I. Stahl, O. S. Wolfbeis, in Methoden der Organischen Chemie (Houben-Weyl), E7a, 4th ed., Georg Thieme Verlag, Stuttgart, 1991, p. 571 (https://www.thieme-connect.de/products/ebooks/book/10.1055/b-003-115784)

K. W. Bentley, Nat. Prod. Rep. 9 (1992) 365 (http://dx.doi.org/10.1039/NP9920900365)

K. W. Bentley, Nat. Prod. Rep. 17 (2000) 247 (http://dx.doi.org/10.1039/A900251K)

A. K. Pathak, C. Ameta, R. Ameta, P. B. Punjabi, J. Heterocycl. Chem. 53 (2016) 1697 (https://doi.org/10.1002/jhet.2515)

B. T. Pérez-Martínez, M. A. Aboudzadeh, U. S. Schubert, J. R. Leiza, R. Tomovska, Chem. Eng. J. 399 (2020) 125761 (https://doi.org/10.1016/j.cej.2020.125761)

H. M. Nguyen, J. Sunarso, C. Li, G. H. Pham, C. Phan, S. Liu, Appl. Catal., A 599 (2020) 117620 (https://doi.org/10.1016/j.apcata.2020.117620)

E. Awuah, A. Capretta, J. Org. Chem. 75 (2010) 5627 (https://doi.org/10.1021/jo100980p)

I. D. Lick, L. Gavernet, L. E. Bruno-Blanch, E. N. Ponzi, Thermochim. Acta 501 (2010) 30 (https://doi.org/10.1016/j.tca.2009.12.019)

R. J. Ruch, S.-J. Cheng, J. E. Klaunig, Carcinogenesis 10 (1989) 1003 (https://doi.org/10.1093/carcin/10.6.1003)

S. S. Sakat, A. R. Juvekar, M. N. Gambhire, Int. J. Pharm. Pharm. Sci. 2 (2010) 146 (https://innovareacademics.in/journal/ijpps/Vol2Issue1/322.pdf)

O. O. Oyedapo, A. J. Famurewa, Int. J. Pharmacogn. 33 (1995) 65 (https://doi.org/10.3109/13880209509088150)

I. Wiegand, K. Hilpert, R. E. W. Hancock, Nat. Protoc. 3 (2008) 163 (https://doi.org/10.1038/nprot.2007.521)

E. Pontiki, D. Hadjipavlou-Litina, Bioorg. Med. Chem. 15 (2007) 5819 (https://doi.org/10.1016/j.bmc.2007.06.001)

A. Sadym, A. Lagunin, D. Filimonov, V. Poroikov, SAR QSAR Environ. Res. 14 (2003) 339 (https://doi.org/10.1080/10629360310001623935)

D. A. Filimonov, A. A. Lagunin, T. A. Gloriozova, A. V. Rudik, D. S. Druzhilovskii, P. V. Pogodin, V. V. Poroikov, Chem. Heterocycl. Compd. 50 (2014) 444 (http://link.springer.com/10.1007/s10593-014-1496-1)

S. Manolov, S. Nikolova, I. Ivanov, Molecules 18 (2013) 1869 (https://www.mdpi.com/1420-3049/18/2/1869)

C. Schotten, Berichte Der Dtsch. Chem. Gesellschaft 17 (1884) 2544 (https://doi.org/10.1002/cber.188401702178)

E. Baumann, Berichte Der Dtsch. Chem. Gesellschaft 19 (1886) 3218 (https://doi.org/10.1002/cber.188601902348)

A. A. H. Kadhum, A. A. Al-Amiery, A. Y. Musa, A. B. Mohamad, Int. J. Mol. Sci. 12 (2011) 5747 (https://doi.org/10.3390/ijms12095747)

J. H. Naama, G. H. Alwan, H. R. Obayes, A. A. Al-Amiery, A. A. Al-Temimi, A. A. H. Kadhum, A. B. Mohamad, Res. Chem. Intermed. 39 (2013) 4047 (http://link.springer.com/10.1007/s11164-012-0921-2)

M. Ebrahimzadeh, S. Nabavi, S. Nabavi, F. Bahramian, A. Bekhradnia, Pak. J. Pharm. Sci. 23 (2010) 29 (https://pubmed.ncbi.nlm.nih.gov/20067863)

J. R. Vane, R. M. Botting, Inflamm. Res. 44 (1995) 1 (http://link.springer.com/10.1007/BF01630479)

V. Jayashree, S. Bagyalakshmi, K. Manjula Devi, D. Richard Daniel, Asian J. Pharm. Clin. Res. 9 (2016) 108 (https://doi.org/10.22159/ajpcr.2016.v9s2.12623)

C. Hansch, A. Leo, D. Hoekman, Exploring QSAR: hydrophobic, electronic, and steric constants, American Chemical Society, Washington, DC, 1995, ISBN-13: 978-0841229914 (https://www.amazon.com/Exploring-QSAR-Hydrophobic-Electronic-Professional/dp/0841229910)

K. S. Joseph, J. Anguizola, D. S. Hage, J. Pharm. Biomed. Anal. 54 (2011) 426 (https://doi.org/10.1016/j.jpba.2010.09.003)

G. R. Behbehani, M. Hossaini Sadr, H. Nabipur, L. Barzegar, J. Chem. 2013 (2013) 1 (https://doi.org/10.1155/2013/120480).