Catalytic investigation of Pd(II) complexes over Heck-Mizoroki reaction: Tailored synthesis, characterization and density functional theory

Main Article Content

Satyendra Nath Shukla
https://orcid.org/0000-0002-9827-8953
Pratiksha Gaur
Sanjay Singh Bagri
Ripul Mehrotra
https://orcid.org/0000-0003-2620-2244
Bhaskar Chaurasia
https://orcid.org/0000-0001-5374-7157

Abstract

Tailored reaction of Schiff base ligands with palladium(II) chloride and imidazole afford three complexes of formula [Pd(II)(L)(imdz)2]Cl; where L = 2-((E)-(p-lylimino)methyl)-6-methoxyphenol (complex 1); 2-methoxy-6-((E)-(phenylimine)methyl)phenol (complex 2); and 2-((E)-(4-chloro­phenyl­imino)methyl)-6-methoxyphenol (complex 3). Compounds were characterized with elemental analysis, molar conductance, electronic spectroscopy, ESI-MS, FT-IR, TGA, 1H-NMR and 13C-NMR. Molecular structure and different quan­tum chemical parameters were calculated using the B3LYP basis set of density functional theory with the standard 6-311+G (d, 2p) level. The catalytic potential of 1-3 was examined over Heck-Mizoroki reaction and found in order of 1 > 2 > 3.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
S. N. Shukla, P. Gaur, S. S. Bagri, R. Mehrotra, and B. Chaurasia, “Catalytic investigation of Pd(II) complexes over Heck-Mizoroki reaction: Tailored synthesis, characterization and density functional theory”, J. Serb. Chem. Soc., vol. 86, no. 3, pp. 269–282, Mar. 2021.
Section
Inorganic Chemistry

References

K. C. Nicolaou, P. G. Bulger, D. Sarlah, Angew. Chem. Int. Ed. 44 (2005) 4442 (https://doi.org/10.1002/anie.200500368)

C. Jia, T. Kitamura, Y. Fujiwara, Acc. Chem. Res. 34 (2001) 633 (https://dx.doi.org/10.1021/ar000209h)

A. Balanta, C. Godard, C. Claver, Chem. Soc. Rev. 40 (2011) 4973 (https://dx.doi.org/10.1039/c1cs15195a)

A. R. Hajipour, F. Rafiee, J. Organomet. Chem. 696 (2011) 2669 (https://dx.doi.org/10.1016/j.jorganchem.2011.03.023)

A. Dewan, U. Bora, G. Borah, Tet. Lett. 55 (2014) 1689 (https://dx.doi.org/10.1016/j.tetlet.2014.01.041)

F. Bakkali, S. Averbeck, D. Averbeck, M. Idaomar, Food Chem. Toxicol. 46 (2008) 446 (https://dx.doi.org/10.1016/j.fct.2007.09.106)

M. Esmaeilpour, J. Javidi, J. Chin. Chem. Soc. 62 (2015) 614 (http://dx.doi.org/10.1002/jccs.201500013)

R. F. Heck, J. Am. Chem. Soc. 90 (1968) 5518 (https://doi.org/10.1021/ja01022a034)

J. P. Genet, M. Savignac, J. Organomet. Chem. 576 (1999) 305 (https://doi.org/10.1021/ja01022a034)

M. Sankarganesh, N. Revathi, J. D. Raja, K. Sakthikumar, G. G. V. Kumar, J. Rajesh, M. Rajalakshmi, L. Mitu, J. Serb. Chem. Soc. 84 (2019) 291 (https://dx.doi.org/10.2298/JSC180609080)

H. O. Oloyede, J. A. O. Woods, H. Gorls, W. Plass, A. O. Eseola, J. Mol. Struct. 1199 (2020) 1 (https://dx.doi.org/10.1016/j.molstruc.2019.127030)

H. A. Doung, M. Cross, J. Org. Lett. 6 (2004) 4679 (https://dx.doi.org/10.1021/ol048211m)

P. J. Knowles, A. Whiting, Org. Biomol. Chem. 5 (2007) 31 (https://dx.doi.org/10.1039/b611547k)

C. S. Letizia, J. Cocchiara, J. Lalko, A. M. Api, Food Chem. Toxicol. 41 (2003) 943 (https://dx.doi.org/10.1016/S0278-6915(03)00015-2)

G. H. Jeffery, J. Bassett, J. Mendham, R. C. Denney, Vogels Textbook of Quantitative Inorganic Analysis, 5th ed., John Wiley & Sons, Inc. New York, 1989

Y. Y. Yu, H. D. Xian, J. F. Liu, G. L. Zhao, Molecules 14 (2009) 1747 (https://dx.doi.org/10.3390/molecules14051747)

M. Amirnasar, A. H. Mahmoudkhani, A. Gorji, S. Dehghanpour, H. R. Bijanzadeh, Polyhedron 21 (2002) 2733 (https://dx.doi.org/10.1016/S0277-5387(02)01277-9)

N. Raman, Y. P. Raja, A. Kulandaisamy, Proc. Indian Acad. Sci. (Chem. Sci.) 113 (2001) 183

G. Y. Yeap, S. T. Ha, S. N. Ishizawa, K. L. Boey, W. A. K. Mahmood, J. Mol. Struct. 658 (2003) 87 (https://dx.doi.org/10.1016/S0022-2860 (03)00453-8)

Gaussian Inc., Wallingford, CT, 2009

M. Dehestani, L. Zeidabadinejad, J. Serb. Chem. Soc. 80 (2015) 1008 (https://dx.doi.org/10.2298/JSC150224027Z)

D. A. Vicic, G. D. Jones, Experimental Methods and Techniques: Basic Techniques, Elsevier Ltd., University of Arkansas, Fayetteville, AR, 2007

W. J. Geary, J. Coord. Chem. Rev. 7 (1971) 81 (https://dx.doi.org/10.1016/S0010-8545(00)80009-0)

E. G. Bakirdere, M. F. Fellah, E. Canpolat, M. Kaya, S. Gur, J. Serb. Chem. Soc. 81 (2016) 520 (https://doi.org/10.2298/JSC151030008B)

M. Shabbir, Z. Akhter, I. Ahmad, S. Ahmed, M. Shafiq, B. Mirza, V. Mckee, K. S. Munawar, A. R. Ashraf, J. Mol. Struct. 1118 (2016) 250 (https://dx.doi.org/10.1016/j.molstruc.2016.04.003)

A. A. Soliman, I. O. Alajrawy, A. F. Attabi, M. R. Shaaban, W. Linert, Spectrochim. Acta, A 152 (2016) 358 (https://dx.doi.org/10.1016/j.saa.2015.07.076)

Z. Leka, S. Grujic, Z. Tesic, S. Lukic, S. Skuban, S. Trifunovic, J. Serb. Chem. Soc. 69 (2004) 137 (https://doi.org/10.2298/JSC0402137L)

C. V. Barra, F. V. Rocha, A. V. G. Netto, R. C. G. Frem, A. E. Mauro, I. Z. Carlos, S. R. Ananias, M. B. Quilles, J. Therm. Anal. Calorim. 106 (2011) 489 (https://dx.doi.org/10.1007/s10973-011-1393-0)

S. A. Al-Jibori, M. M. Barbooti, M. H. S. Al-Jibori, B. K. Aziz, J. Mater. Environ. Sci. 8 (2017) 1365

V. G. Netto, A. M. Santana, A. E. Mauro, Regina C. G. Frem, J. Therm. Anal. Calorim 79 (2005) 339 (https://doi.org/10.1007/s10973-005-0061-7)

N. Yıldırım, N. Demir, G. Alpaslan, B. Boyacioglu, M. Yıldız, H. Unver, J. Serb. Chem. Soc. 83 (2018) 707 (https://dx.doi.org/10.2298/JSC171001009Y)

T. A. Mohamed, I. A. Shaaban, R. S. Farag, W. M. Zoghaib, M. S. Afifi, Spectrochim. Acta, A 135 (2015) 417 (https://dx.doi.org/10.1016/j.saa.2014.07.018)

J. M. Collinson, Wilton-Ely, J. Cat. Commun. 87 (2016) 78 (https://dx.doi.org/10.1016/j.catcom.2016.09.006)

S. Layek, Anuradha. B. Agrahari, D. D. Pathak, J. Organomet. Chem. 846 (2017) 105 (https://dx.doi.org/10.1016/j.jorganchem.2017.05.049)

R. N. Prabhu, R. Ramesh, Tetrahedron Lett. 53 (2012) 5961 (https://dx.doi.org/10.1016/j.tetlet.2012.08.120)

C. S. Consorti, G. Ebeling, F. R. Flores, F. Rominger, J. Adv. Synth. Catal. 346 (2004) 617 (https://dx.doi.org/10.1002/adsc.200303228).