Sodium ion chemosensor of 3-oxo-3H-benzo[f]chromene-2-carboxylic acid: An experimental and computational study Scientific paper

Main Article Content

Jamaludin Al Anshori
https://orcid.org/0000-0003-4249-1621
Andi Rahim
Ajar Faflul Abror
Ika Wiani Hidayat
Tri Mayanti
Muhammad Yusuf
Juliandri Juliandri
https://orcid.org/0000-0002-9381-8359
Ace Tatang Hidayat

Abstract

A fluorescence compound with the typical skeleton of benzocoum­arin was synthesized and its interaction with various metal ions was evaluated. The synthesis was performed via Knoevenagel condensation whereas identific­ation of the product was accomplished by various spectroscopic tech­niques. The chemosensor test against representative metal ions was monitored by fluore­cence spectrophotometry. A density functional theory calculation (DFT, functional/basis set; M06/6-31G (d, p)) was also performed to clarify the expe­rimental results and to confirm the mechanism of interaction. 3-Oxo-3H-benzo­[f]chromene-2-carboxylic acid 1 was obtained as a yellow solid in 60 % chem­ical yield. Melting point; 235.6–236.7 °C and λmax UV/Vis, λem and Stokes shift (MeOH, nm) of 374, 445 and 71 nm, respectively. The structure of the compound was identified based on spectroscopic data and literature com­par­ison. Compound 1 exhibited a chelation quenched fluorescence (CHQF) phen­menon selectively toward the Na+, with a binding stoichiometry (1:2) and LoD and LoQ of 0.14 and 0.48 mg/L, respectively. Based on DFT calcul­ations, compound 1 chelated Na+ through mechanism of oxidative (1:1 equivalent) and reductive (2:1 equivalent) photoinduced electron transfer (PET), corres­pond­ingly.

Article Details

How to Cite
[1]
J. Al Anshori, “Sodium ion chemosensor of 3-oxo-3H-benzo[f]chromene-2-carboxylic acid: An experimental and computational study: Scientific paper”, J. Serb. Chem. Soc., vol. 86, no. 10, pp. 971-982, Sep. 2021.
Section
Analytical Chemistry

References

C. Zhou, N. Xiao, Y. Li, Can. J. Chem. 92 (2014) 1092 (https://dx.doi.org/10.1139/cjc-2014-0011)

J. S. Kim, D. T. Quang, Chem. Rev. 107 (2007) 3780 (https://dx.doi.org/10.1021/cr068046j)

H. N. Kim, M. H. Lee, H. J. Kim, J. S. Kim, J. Yoon, Chem. Soc. Rev. 37 (2008) 1465 (http://dx.doi.org/10.1039/B802497A)

X. Chen, T. Pradhan, F. Wang, J. S. Kim, J. Yoon, Chem. Rev. 112 (2012) 1910 (https://doi.org/10.1021/cr200201z)

J. F. Clark, D. L. Clark, G. D. Whitener, N. C. Schroeder, S. H. Strauss, Environ. Sci. Technol. 30 (1996) 3124 (https://dx.doi.org/10.1021/es960394n)

M. P. Anderson, R. J. Gregory, S. Thompson, D. W. Souza, S. Paul, R. C. Mulligan, A. E. Smith, M. J. Welsh, Science 80 253 (1991) 202 (https://dx.doi.org/10.1126/science.1712984)

Y. Yamini, N. Alizadeh, M. Shamsipur, Anal. Chim. Acta 355 (1997) 69 (https://dx.doi.org/10.1016/S0003-2670(97)81613-3)

C.F. Harrington, S.A. Merson, T. M. D. D’Silva, Anal. Chim. Acta 505 (2004) 247 (https://dx.doi.org/10.1016/j.aca.2003.10.046)

S. L. C. Ferreira, A. S. Queiroz, M. S. Fernandes, H. C. dos Santos, Spectrochim. Acta, B 57 (2002) 1939–1950 (https://dx.doi.org/10.1016/S0584-8547(02)00160-X)

J. C. Yu, J. M. Lo, C. M. Wai, Anal. Chim. Acta 154 (1983) 307 (https://dx.doi.org/10.1016/0003-2670(83)80032-4)

A. Ali, H. Shen, X. Yin, Anal. Chim. Acta 369 (1998) 215 (https://doi.org/10.1016/S0003-2670(98)00252-9)

A. Bobrowski, K. Nowak, J. Zarebski, Anal. Bioanal. Chem. 382 (2005) 1691 (https://dx.doi.org/10.1007/s00216-005-3313-2)

S. Karthikeyan, V. K. Gupta, R. Boopathy, A. Titus, G. Sekaran, J. Mol. Liq. 173 (2012) 153 (https://dx.doi.org/10.1016/j.molliq.2012.06.022)

V. K. Gupta, S. Kumar, R. Singh, L. P. Singh, S. K. Shoora, B. Sethi, J. Mol. Liq. 195 (2014) 65 (https://dx.doi.org/10.1016/j.molliq.2014.02.001)

G. Dimeski, T. Badrick, A. S. John, Clin. Chim. Acta 411 (2010) 309 (https://dx.doi.org/10.1016/j.cca.2009.12.005)

N. Mergu, A. K. Singh, V. K. Gupta, Sensors 15 (2015) 9097 (https://doi.org/10.3390/s150409097)

K. Yamada, Y. Nomura, D. Citterio, N. Iwasawa, K. Suzuki, J. Am. Chem. Soc. 127 (2005) 6956 (https://dx.doi.org/10.1021/ja042414o)

Y. M. Poronik, G. Clermont, M. Blanchard-Desce, D. T. Gryko, J. Org. Chem. 78 (2013) 11721 (https://dx.doi.org/10.1021/jo401653t)

T. Gunnlaugsson, M. Nieuwenhuyzen, L. Richard, V. Thoss, J. Chem. Soc. Perkin Trans. 2 (2002) 141 (http://dx.doi.org/10.1039/B106474F)

P. Nandhikonda, M. P. Begaye, M. D. Heagy, Tetrahedron Lett. 50 (2009) 2459 (https://dx.doi.org/10.1016/j.tetlet.2009.02.197)

W. Zhou, J. Ding, J. Liu, Nucleic Acids Res. 44 (2016) 10377 (https://dx.doi.org/10.1093/nar/gkw845)

M. Taki, H. Ogasawara, H. Osaki, A. Fukazawa, Y. Sato, K. Ogasawara, T. Higashiyama, S. Yamaguchi, Chem. Commun. 51 (2015) 11880 (https://dx.doi.org/10.1039/c5cc03547c)

I. Leray, J.-P. Lefevre, J.-F. Delouis, J. Delaire, B. Valeur, Chem. Eur. J. 7 (2001) 4590 (https://doi.org/10.1002/1521-3765(20011105)7:21%3C4590::AID-CHEM4590%3E3.0.CO;2-A)

N. A. Al-Masoudi, N. J. Al-Salihi, Y. A. Marich, J. Fluoresc. 25 (2015) 1847 (https://dx.doi.org/10.1007/s10895-015-1677-z)

J. Al Anshori, D. S. Rahayu, A. T. Hidayat, I. W. Hidayat, A. Zainuddin, Res. J. Chem. Environ. 22 (2018) 91 (https://worldresearchersassociations.com/SpecialIssueAugust2018.aspx)

M. Tasior, D. Kim, S. Singha, M. Krzeszewski, K. H. Ahn, D. T. Gryko, J. Mater. Chem. C 3 (2015) 1421 (https://dx.doi.org/10.1039/C4TC02665A)

Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford, CT, 2016 (https://gaussian.com)

Y. Zhao, D. G. Truhlar, Theor. Chem. Accounts 120 (2008) 215 (https://dx.doi.org/10.1007/s00214-007-0310-x)

J. M. Xiao, L. Feng, L. S. Zhou, H. Z. Gao, Y. L. Zhang, K. W. Yang, Eur. J. Med. Chem. 59 (2013) 150 (https://dx.doi.org/10.1016/j.ejmech.2012.11.019)

J. Piao, J. Lv, X. Zhou, T. Zhao, X. Wu, Spectrochim. Acta, A 128 (2014) 475 (https://dx.doi.org/10.1016/j.saa.2014.03.002)

M. Amirnasr, R. Sadeghi Erami, S. Meghdadi, Sensors Actuators, B 233 (2016) 355 (https://dx.doi.org/10.1016/j.snb.2016.04.077)

S. Goswami, S. Chakraborty, S. Paul, S. Halder, S. Panja, S. K. Mukhopadhyay, Org. Biomol. Chem. 12 (2014) 3037 (https://dx.doi.org/10.1039/C4OB00067F)

X. B. Fu, X. F. Wang, J. N. Chen, D. W. Wu, T. Li, X. C. Shen, J. K. Qin, Molecules 20 (2015) 18565 (https://doi.org/10.3390/molecules201018565)

W. Zhao, L. Pan, W. Bian, J. Wang, Chem. Phys. Chem. 9 (2008) 1593 (https://dx.doi.org/10.1002/cphc.200800131)

X. Liu, J. M. Cole, K. S. Low, J. Phys. Chem., C 117 (2013) 14731 (https://dx.doi.org/10.1021/jp310397z)

R. Wang, F. Zhang, J. Mater. Chem., B 2 (2014) 2422 (https://dx.doi.org/10.1039/C3TB21447H)

T. G. Phan, A. Bullen, Immunol. Cell Biol. 88 (2010) 438 (https://doi.org/10.1038/icb.2009.116)

B. P. Joshi, T. D. Wang, Cancers 2 (2010) 1251 (https://dx.doi.org/10.3390/cancers2021251)

J. Rao, A. Dragulescu-Andrasi, H. Yao, Curr. Opin. Biotechnol. 18 (2007) 17 (https://dx.doi.org/10.1016/j.copbio.2007.01.003)

R. Macgregor, G. Weber, Ann. N.Y. Acad. Sci. 366 (1981) 140 (https://doi.org/10.1111/j.1749-6632.1981.tb20751.x)

A. T. Afaneh, G. Schreckenbach, J. Phys. Chem., A 119 (2015) 8106 (https://dx.doi.org/10.1021/acs.jpca.5b04691)

N. Mergu, M. Kim, Y.-A. Son, Spectrochim. Acta, A 188 (2018) 571 (https://doi.org/10.1016/j.saa.2017.07.047)

T. Keawwangchai, N. Morakot, B. Wanno, J. Mol. Model. 19 (2013) 1435 (https://dx.doi.org/10.1007/s00894-012-1698-3).