Supercapacitors based on graphene/pseudocapacitive materials (Extended Abstract)

Main Article Content

Denis Sačer
Magdalena Kralj
Suzana Sopčić
Milica Košević
Aleksandar Dekanski
http://orcid.org/0000-0003-3122-8342
Marijana Kraljić Roković

Abstract

In this work composites of graphene and SnO2 were successfully prepared by single step simultaneous synthesis of SnO2 and reduction of graphene oxide (GO). Three different compositions of precursor solution resulted with different composite materials containing graphene and SnO2. The reaction was carried out by using microwave-assisted hydrothermal synthesis. Scanning electron microscopy (SEM) and Energy-dispersive X-ray spectroscopy (EDX) gave insight into morphology and composition of the obtained materials. Good capacitive/pseudocapacitive properties of the obtained material suitable for supercapacitor application were registered by using cyclic voltammetry from where specific capacitance values up to 93 F g-1 were determined.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
D. Sačer, M. Kralj, S. Sopčić, M. Košević, A. Dekanski, and M. Kraljić Roković, “Supercapacitors based on graphene/pseudocapacitive materials (Extended Abstract)”, J. Serb. Chem. Soc., vol. 82, no. 4, pp. 411–416, May 2017.
Section
Electrochemistry

References

N. Šešelj, D. Sačer, M. Kraljić Roković, Kem. ind. 65 (2016) 127

C. D. Lokhande, D. P. Dubal, O. S. Joo, Curr. Appl. Phys. 11 (2011) 255

S. Sopčić, R. Peter, M. Petravić, Z. Mandić, J. Power Sources 240 (2013) 252

W. Shi, J. Zhu, D. H. Sim, Y. Y. Tay, Z. Lu, X. Zhang, Y. Sharma, M. Srinivasan, H. Zhang, H. H. Hng, Q. Yan, J. Mater. Chem. 21 (2011) 3422

Z. Wen, S. Cui, H. Kim, S. Mao, K. Yu, G. Lu, H. Pu, O. Mao, J. Chen, J. Mater. Chem. 22 (2012) 3300

M. Ara, K. Wadumesthrige, T. Meng, S. O. Salley, K. Y. S. Ng, RSC Adv. 4 (2014) 20540

S. N. Pusawale, P. R. Deshmukh, C. D. Lokhande, Appl. Surf. Sci. 257 (2011) 9498

N. L. Wu, Mater. Chem. Phys. 75 (2002) 6

D. Gromadskyi, V. Chervoniuk, S. Kirillov, J. Electrochem. Sci. Eng. 6 (2016) 225

Y. Wang, J. Y. Lee, J. Power Sources 144 (2005) 220

H. N. Lim, R. Nurzulaikha, I. Harrison, S. S. Lim, W. T. Tan, M. C. Yeo, M. A. Yarmo, N. M. Huang, Ceram. Int. 38 (2012) 4209

H. Zhang, J. Feng, T. Fei, S. Liu, T. Zhang, Sensors Actuators, B Chem. 190 (2014) 472

D. C. Marcano, D. V Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, J. M. Tour, ACS Nano 4 (2010) 4806

P.-G. Ren, D.-X. Yan, X. Ji, T. Chen, Z.-M. Li, Nanotechnology 22 (2011) 55705

D. Sačer, D. Čapeta, I. Šrut Rakić, R. Peter, M. Petravić, M. Kraljić Roković, Electrochim. Acta 193 (2016) 311

C. Bosch-Navarro, E. Coronado, C. Martí-Gastaldo, J. F. Sánchez-Royo, M. G. Gómez, Nanoscale 4 (2012) 3977

W. Zhang, Y. Zhang, Y. Tian, Z. Yang, Q. Xiao, X. Guo, L. Jing, Y. Zhao, Y. Yan, J. Feng, K. Sun, ACS Appl. Mater. Interfaces 6 (2014) 2248.