3D-QSAR study of adenosine 5'-phosphosulfate (APS) analouges as ligands for APS reductase Scientific paper

Main Article Content

Slavica Milorad Erić
Ilija Cvijetić
Mire Zloh


Metabolism of sulfur (sulfur assimilation pathway, SAP) is one of the key pathways for the pathogenesis and survival of persistant bacteria, such as Mycobacterium tuberculosis (Mtb), in the latent period. Adenosine 5'-phos­pho­sulfate reductase (APSR) is an important enzyme involved in the SAP, absent from the human body, so it might represent a valid target for deve­lop­ment of new antituberculosis drugs. This work aimed to develop 3D-QSAR model based on the crystal structure of APSR from Pseudomonas aeruginosa, which shows high degree of homology with APSR from Mtb, in complex with its substrate, adenosine 5'-phosphosulfate (APS). 3D-QSAR model was built from a set of 16 nucleotide analogues of APS using alignment-independent descrip­tors derived from molecular interaction fields (MIF). The model imp­roves the understanding of the key characteristics of molecules necessary for the inter­action with target, and enables the rational design of novel small mole­cule inhi­bitors of Mtb APSR.


Download data is not yet available.


Metrics Loading ...

Article Details

How to Cite
S. M. Erić, I. Cvijetić, and M. Zloh, “3D-QSAR study of adenosine 5’-phosphosulfate (APS) analouges as ligands for APS reductase: Scientific paper”, J. Serb. Chem. Soc., vol. 86, no. 6, pp. 561–570, Jun. 2021.
Theoretical Chemistry



R. Schnell, G. Schneider, Biochem. Biophys. Res. Comm. 396 (2010) 33 (https://doi.org/10.1016/j.bbrc.2010.02.118)

O. Poyraz, K. Brunner, B. Lohkamp, H. Axelsson, L. G. J. Hammarström, R. Schnell, G. Schneider, PLOS ONE 10 (2015) e0121494 (https://doi.org/10.1371/journal.pone.0127016)

R. Iwanicka-Nowicka, A. Zielak, A. M. Cook, M. S. Thomas, M. M. Hryniewicz, J. Bacteriol. 189 (2007) 1675 (https://doi.org/10.1128/JB.00592-06)

P. B. Palde, A. Bhaskar, L. E. Pedro Rosa, F. Madoux, P. Chase, V. Gupta, T. Spicer, L. Scampavia, A. Singh, K. S. Carroll, ACS Chem. Biol. 11 (2015) 172 (https://doi.org/10.1021/acschembio.5b00517)

J. A. Hong, D. P. Bhave, K. S. Carroll, J. Med. Chem. 52 (2009) 5485 (https://doi.org/10.1021/jm900728u)

S. K. Hatzios, C. R. Bertozzi, PLOS Pathog 7 (2011) e1002036 (https://doi.org/10.1371/journal.ppat.1002036)

S. Cosconati, J. A. Hong, E. Novellino, K. S. Carroll, D. S. Goodsell, A. J. Olson, J. Med. Chem. 51 (2008) 6627 (https://doi.org/10.1016/j.biotechadv.2011.08.021)

H. Wieman, K. Tøndel, E. Anderssen, F. Drabløs, Mini Rev. Med. Chem. 4 (2004) 79 (https://doi.org/10.2174/1389557043403639)

OMEGA OpenEye Scientific Software, Santa Fe, NM (http://www.eyesopen.com)

P. C. D. Hawkins, A. G. Skillman, G. L. Warren, B. A. Ellingson, M. T. Stahl, J. Chem. Inf. Model. 50 (2010) 572 (https://doi.org/10.1021/ci100031x)

ROCS OpenEye Scientific Software, Santa Fe, NM (http://www.eyesopen.com)

P. C. D. Hawkins, A. G. Skillman, A. Nicholls, J. Med. Chem. 50 (2007) 74 (https://doi.org/10.1021/jm0603365)

M. Pastor, G. Cruciani, I. McLay, S. Pickett, S. Clementi, J. Med. Chem. 43 (2000) 3233 (https://doi.org/10.1021/jm000941m)

J. Chartron, K. S. Carroll , C. Shiau, H. Gao, J. A. Leary, C. R. Bertozzi, C. David Stout C. J. Mol. Biol. 364 (2006) 152 (https://doi.org/10.1016/j.biotechadv.2011.08.021).

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.