Microstructure, roughness, and corrosion resistance of X5CrNi18-10 austenite stainless steel welded joint Extended abstract

Main Article Content

Bojana Radojković
https://orcid.org/0000-0003-3111-0264
Bore Jegdić
https://orcid.org/0000-0002-3287-3653
Jovanka Kovačina
https://orcid.org/0000-0002-3494-9180
Sanja Stevanović
Dunja Marunkić

Abstract

The influence of the microstructure of X5CrNi18-10 stainless steel welded joint on its resistance to general, pitting, and intergranular corrosion was analyzed. The structure of weld metal, heat affected zone (HAZ) and base metal before and after electrochemical testing was analyzed using SEM/EDS. The influence of the roughness level of the welded joint on its resistance to the mentioned types of corrosion was also examined. Although the degree of sen­sitization of HAZ was significantly lower than the limit value, HAZ showed a noticeably greater tendency to general and pitting corrosion than weld metal and base metal. Polishing has been shown to improve significantly the corros­ion resistance of HAZ than in other parts of a welded joint.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
B. Radojković, B. Jegdić, J. Kovačina, S. Stevanović, and D. Marunkić, “Microstructure, roughness, and corrosion resistance of X5CrNi18-10 austenite stainless steel welded joint: Extended abstract”, J. Serb. Chem. Soc., vol. 86, no. 4, pp. 407–413, Apr. 2021.
Section
Electrochemistry

References

H. Bohni, Localized Corrosion of Passive Metals, in Uhlig`s Corrosion Handbook, R. W. Revie, Ed., John Wiley & Sons, Inc, Hoboken, NJ, 2011, p. 157 (https://doi.org/ 10.1002/9780470872864)

J. R. Davis, Corrosion of Weldments, ASM International, Materials Park, OH, 2006, p. 43 (https://doi.org/10.1361/corw2006p001)

A. Chiba, I. Muto, Y. Sugawara, N. Hara, J. Electrochem. Soc. 160 (2013) C511 (https://doi.org/10.1149/2.081310jes)

N. Ida, I. Muto, Y. Sugawara, N. Hara, J. Electrochem. Soc. 164 (2017) C779 (https://doi.org/10.1149/2.1011713jes)

B. T. Lu, Z. K. Chen, J. L. Luo, B. M. Patchett, Z. H. Xu, Electrochim. Acta 50 (2005) 1391 (http://dx.doi.org/10.1016/j.electacta.2004.08.036)

B. Jegdić, B. Bobić, B. Radojković, B. Alić, Lj. Radovanović, J. Mater. Process. Technol. 266 (2019) 579 (https://doi.org/10.1016/j.jmatprotec.2018.11.029)

B. Radojković, J. Kovačina, B. Jegdić, B. Bobić, B. Alić, D. Marunkić, A. Simović, Mater. Corros. (2020) 1, accepted (https://doi.org/10.1002/maco.202012039)

H. Ezuber, A. Alshater, S. O. Nisar, A. Gonsalvez, S. Aslam, Surf. Eng. Appl. Electrochem. 54 (2018) 73 (https://doi.org/10.3103/S1068375518010039)

M. J. Seo, H.-S. Shim, K. M. Kim, S.-I. Hong, D. H. Hur, Nucl. Eng. Des. 280 (2014) 62 (http://dx.doi.org/10.1016/j.nucengdes.2014.08.023)

S. Reinemann, P. Rosemann, M. Babutzka, J. Lehmann, A. Burkert, Mater. Corros. 70 (2019) 1776 (https://doi.org/10.1002/maco.201910874).

Most read articles by the same author(s)