Enhanced gas permeation performance of mixed matrix membranes containing polysulfone and modified mesoporous MCM-41 Scientific paper

Main Article Content

Kaveh Abbasi Kololi
Seyed Mostafa Tabatabaei Qomsheh
Maziar Noei
Masoud Saberi


The aim of this study was the development of mixed matrix mem­branes (MMMs) based on silica MCM-41 dispersed in polysulfone (PSf) for the separation of carbon dioxide from methane. For this purpose, MCM-41 was syn­thesized by a hydrothermal method and was modified with 3-aminopropyl­tri­etoxysilane (APTES). SEM, FTIR, BET and XRD analyses were used for char­acterization of the modified and unmodified particles. Then, various MMMs containing PSf at different weight percents (5, 10, 15 and 20) of modified and unmodified particles were prepared and the morphology and structure of the prepared membranes were studied using SEM and XRD analyses. Regardless of the particle type, the addition of MCM-41 to PSf caused an increase in gas permeability compared to a neat PSf membrane. Adding unmodified particles to PSf matrix resulted in undesirable effects, including particle agglomeration and/or the formation of interfacial voids. The MMMs with modified MCM-41 showed relatively better separation performance compared to MMMs with unmodified MCM-41. As a result, the MMM of PSf with 20 wt. % modified MCM-41 showed a significant increase in selectivity of carbon dioxide/methane and the value of selectivity reached 25.24.


Download data is not yet available.


Metrics Loading ...

Article Details

How to Cite
K. Abbasi Kololi, S. M. Tabatabaei Qomsheh, M. Noei, and M. Saberi, “Enhanced gas permeation performance of mixed matrix membranes containing polysulfone and modified mesoporous MCM-41: Scientific paper”, J. Serb. Chem. Soc., vol. 86, no. 9, pp. 871–884, Aug. 2021.


J. D. Wind, PhD ТThesis, University of Texas, Austin, TX, 2002 (https://repositories.lib.utexas.edu/handle/2152/1048)

R. E. Kesting, A. Fritzsche, Wiley-Inter. 36 (1993) 102 (https://doi.org/10.1002/pi.1995.210360116)

X. Guo, Z. Qiao, D. Liu, C. Zhong, J. Mat. Chem., A 7 (2019) 24738 (https://doi.org/10.1039/C9TA09012F)

S. E. Kentish, C. A. Scholes, G. W. Stevens, Recent Patent Chem. Eng. 1 (2008) 52 (https://www.ingentaconnect.com/content/ben/cheng/2008/00000001/00000001/art00005)

P. Pandey, R. Chauhan, Prog. Polym. Sci. 26 (2001) 853 (https://doi.org/10.1016/S0079-6700(01)00009-0)

M. Saberi, J. Serb Chem. Soc. 86 (2021) 341 (https://doi.org/10.2298/JSC200715046S )

A. Bos, I. G. M. Punt, M. Wessling, H. Strathmann, Sep. Purif. Technol. 14 (1998) 27 (https://doi.org/10.1016/S1383-5866(98)00057-4)

J. D. Wind, C. Staudt-Bickel, D. R. Paul, W. J. Koros, Ind. Eng. Chem. Res. 41 (2002) 6139 (https://doi.org/10.1021/ie0204639)

A. Brunetti, P. Bernardo, E. Drioli, G. Barbieri, Y. Yampolskii, B. Freeman, Membr. Gas Separ. 6 (2010) 279

P. Bernardo, G. Clarizia, Eng. Trans. 32 (2013) 1999 (https://doi.org/10.3303/CET1332334)

L. M. Robeson, J. Membr. Sci. 320 (2008) 390 (https://doi.org/10.1016/j.memsci.2008.04.030)

J. K. Ward, W. J. Koros, J. Membr. Sci. 377 (2011) 75 (https://doi.org/10.1016/j.memsci.2011.04.010)

T. W. Pechar, S. Kim, B. Vaughan, E. Marand, M. Tsapatsis, H. K. Jeong, C. J. Cornelius, J. Membr. Sci. 277 (2006) 195 (https://doi.org/10.1016/j.memsci.2005.10.029)

E. Karatay, H. Kalıpçılar, L. Yılmaz, J. Membr. Sci. 364 (2010) 75 (https://doi.org/10.1016/j.memsci.2010.08.004)

P. Jha, J. D. Way, J. Membr. Sci. 324 (2008) 151 (https://doi.org/10.1016/j.memsci.2008.07.005)

S. Rafiq, Z. Man, A. Maulud, N. Muhammad, S. Maitra, Sep. Purif. Technol. 90 (2012) 162 (https://doi.org/10.1016/j.seppur.2012.02.031)

A. M. Hillock, S. J. Miller, W. J. Koros, J. Membr. Sci. 314 (2008) 193 (https://doi.org/10.1016/j.memsci.2008.01.046)

M. Junaidi, C. Leo, S. Kamal, A. Ahmad, T. Chew, Fuel Process. 112 (2013) 1 (https://doi.org/10.1016/j.fuproc.2013.02.014)

R. Mahajan, R. Burns, M. Schaeffer, W. J. Koros, J. Appl. Polym. Sci. 86 (2002) 881 (https://doi.org/10.1002/app.10998)

T. T. Moore, R. Mahajan, D. Q. Vu, W. J. Koros, AICHE J. 50 (2004) 311 (https://doi.org/10.1002/aic.10029)

X. Liu, H. Sun, Y. Chen, Y. Yang, A. Borgna, Microporous Mesoporous Mat. 121 (2009) 73 (https://doi.org/10.1016/j.micromeso.2009.01.018)

M. Nekoomanesh, H. Arabi, G. Nejabat, M. Emami, G. Zohuri, Iran. J. Polym. Sci. Tech. (Persian), 21 (2008) 243

T. L. Chew, A. L. Ahmad, S. Bhatia, Adv. Coll. Int. Sci. 153 (2010) 43 (https://doi.org/10.1016/j.cis.2009.12.001)

G. R. Nejabat, M. Nekoumanesh, H. Arabi, Iran. Polym. J. 19 (2010) 79 (https://www.sid.ir/en/journal/ViewPaper.aspx?id=167621)

T. Yasmin, K. Müller, J. Chromat., A 1217 (2010) 3362 (https://doi.org/10.1016/j.chroma.2010.03.005)

M. Laghaei, M. Sadeghi, B. Ghalei, M. Dinari, Prog. Org. Coat. 90 (2016) 163 (https://doi.org/10.1016/j.porgcoat.2015.10.007)

M. Laghaei, M. Sadeghi, B. Ghalei, M. Shahrooz, J. Mem. Sci. 513 (2016) 20 (https://doi.org/10.1016/j.memsci.2016.04.039)

S. Sorribas, B. Zornoza, C. Téllez, J. Coronas, J. Membr. Sci. 452 (2014) 184 (https://doi.org/10.1016/j.memsci.2013.10.043)

J. Yuan, S. Zhou, G. Gu, L. Wu, J. Mat. Sci. 40 (2005) 3927 (https://link.springer.com/article/10.1007/s10853-005-0714-8)

I. F. Vankelecom, E. Scheppers, R. Heus, J. B. Uytterhoeven, J. Phys. Chem. 98 (1994) 12390 (https://doi.org/10.1021/j100098a038)

Q. Cai, Z. S. Luo, W. Q. Pang, Y. W. Fan, X. H. Chen, F. Z. Cui, J. Chem. Mater. 13 (2001) 258 (https://doi.org/10.1021/cm990661z)

M. Janicke, C. Landry, S. Christiansen, S. Birtalan, G. Stucky, B. Chmelka, Chem. Мat. 11 (1999) 1342 (https://doi.org/10.1021/cm981135v)

A. Jomekian, M. Pakizeh, A. R. Shafiee, S. A. A. Mansoori, Sep. Purif. Technol. 80 (2011) 556 (https://doi.org/10.1016/j.seppur.2011.06.011)

T. C. Merkel, Z. He, I. Pinnau, B. D. Freeman, P. Meakin, A. J. Hill, Macromolecules 36 (2003) 6844 (https://doi.org/10.1021/ma0341566)

I. F. Vankelecom, S. van den Broeck, E. Merckx, H. Geerts, P. Grobet, J. B. Uytterhoeven, J. Phys. Chem. 100 (1996) 3753 (https://doi.org/10.1021/jp9526511).