Enhanced gas permeation performance of mixed matrix membranes containing polysulfone and modified mesoporous MCM-41 Scientific paper
Main Article Content
Abstract
The aim of this study was the development of mixed matrix membranes (MMMs) based on silica MCM-41 dispersed in polysulfone (PSf) for the separation of carbon dioxide from methane. For this purpose, MCM-41 was synthesized by a hydrothermal method and was modified with 3-aminopropyltrietoxysilane (APTES). SEM, FTIR, BET and XRD analyses were used for characterization of the modified and unmodified particles. Then, various MMMs containing PSf at different weight percents (5, 10, 15 and 20) of modified and unmodified particles were prepared and the morphology and structure of the prepared membranes were studied using SEM and XRD analyses. Regardless of the particle type, the addition of MCM-41 to PSf caused an increase in gas permeability compared to a neat PSf membrane. Adding unmodified particles to PSf matrix resulted in undesirable effects, including particle agglomeration and/or the formation of interfacial voids. The MMMs with modified MCM-41 showed relatively better separation performance compared to MMMs with unmodified MCM-41. As a result, the MMM of PSf with 20 wt. % modified MCM-41 showed a significant increase in selectivity of carbon dioxide/methane and the value of selectivity reached 25.24.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
J. D. Wind, PhD ТThesis, University of Texas, Austin, TX, 2002 (https://repositories.lib.utexas.edu/handle/2152/1048)
R. E. Kesting, A. Fritzsche, Wiley-Inter. 36 (1993) 102 (https://doi.org/10.1002/pi.1995.210360116)
X. Guo, Z. Qiao, D. Liu, C. Zhong, J. Mat. Chem., A 7 (2019) 24738 (https://doi.org/10.1039/C9TA09012F)
S. E. Kentish, C. A. Scholes, G. W. Stevens, Recent Patent Chem. Eng. 1 (2008) 52 (https://www.ingentaconnect.com/content/ben/cheng/2008/00000001/00000001/art00005)
P. Pandey, R. Chauhan, Prog. Polym. Sci. 26 (2001) 853 (https://doi.org/10.1016/S0079-6700(01)00009-0)
M. Saberi, J. Serb Chem. Soc. 86 (2021) 341 (https://doi.org/10.2298/JSC200715046S )
A. Bos, I. G. M. Punt, M. Wessling, H. Strathmann, Sep. Purif. Technol. 14 (1998) 27 (https://doi.org/10.1016/S1383-5866(98)00057-4)
J. D. Wind, C. Staudt-Bickel, D. R. Paul, W. J. Koros, Ind. Eng. Chem. Res. 41 (2002) 6139 (https://doi.org/10.1021/ie0204639)
A. Brunetti, P. Bernardo, E. Drioli, G. Barbieri, Y. Yampolskii, B. Freeman, Membr. Gas Separ. 6 (2010) 279
P. Bernardo, G. Clarizia, Eng. Trans. 32 (2013) 1999 (https://doi.org/10.3303/CET1332334)
L. M. Robeson, J. Membr. Sci. 320 (2008) 390 (https://doi.org/10.1016/j.memsci.2008.04.030)
J. K. Ward, W. J. Koros, J. Membr. Sci. 377 (2011) 75 (https://doi.org/10.1016/j.memsci.2011.04.010)
T. W. Pechar, S. Kim, B. Vaughan, E. Marand, M. Tsapatsis, H. K. Jeong, C. J. Cornelius, J. Membr. Sci. 277 (2006) 195 (https://doi.org/10.1016/j.memsci.2005.10.029)
E. Karatay, H. Kalıpçılar, L. Yılmaz, J. Membr. Sci. 364 (2010) 75 (https://doi.org/10.1016/j.memsci.2010.08.004)
P. Jha, J. D. Way, J. Membr. Sci. 324 (2008) 151 (https://doi.org/10.1016/j.memsci.2008.07.005)
S. Rafiq, Z. Man, A. Maulud, N. Muhammad, S. Maitra, Sep. Purif. Technol. 90 (2012) 162 (https://doi.org/10.1016/j.seppur.2012.02.031)
A. M. Hillock, S. J. Miller, W. J. Koros, J. Membr. Sci. 314 (2008) 193 (https://doi.org/10.1016/j.memsci.2008.01.046)
M. Junaidi, C. Leo, S. Kamal, A. Ahmad, T. Chew, Fuel Process. 112 (2013) 1 (https://doi.org/10.1016/j.fuproc.2013.02.014)
R. Mahajan, R. Burns, M. Schaeffer, W. J. Koros, J. Appl. Polym. Sci. 86 (2002) 881 (https://doi.org/10.1002/app.10998)
T. T. Moore, R. Mahajan, D. Q. Vu, W. J. Koros, AICHE J. 50 (2004) 311 (https://doi.org/10.1002/aic.10029)
X. Liu, H. Sun, Y. Chen, Y. Yang, A. Borgna, Microporous Mesoporous Mat. 121 (2009) 73 (https://doi.org/10.1016/j.micromeso.2009.01.018)
M. Nekoomanesh, H. Arabi, G. Nejabat, M. Emami, G. Zohuri, Iran. J. Polym. Sci. Tech. (Persian), 21 (2008) 243
T. L. Chew, A. L. Ahmad, S. Bhatia, Adv. Coll. Int. Sci. 153 (2010) 43 (https://doi.org/10.1016/j.cis.2009.12.001)
G. R. Nejabat, M. Nekoumanesh, H. Arabi, Iran. Polym. J. 19 (2010) 79 (https://www.sid.ir/en/journal/ViewPaper.aspx?id=167621)
T. Yasmin, K. Müller, J. Chromat., A 1217 (2010) 3362 (https://doi.org/10.1016/j.chroma.2010.03.005)
M. Laghaei, M. Sadeghi, B. Ghalei, M. Dinari, Prog. Org. Coat. 90 (2016) 163 (https://doi.org/10.1016/j.porgcoat.2015.10.007)
M. Laghaei, M. Sadeghi, B. Ghalei, M. Shahrooz, J. Mem. Sci. 513 (2016) 20 (https://doi.org/10.1016/j.memsci.2016.04.039)
S. Sorribas, B. Zornoza, C. Téllez, J. Coronas, J. Membr. Sci. 452 (2014) 184 (https://doi.org/10.1016/j.memsci.2013.10.043)
J. Yuan, S. Zhou, G. Gu, L. Wu, J. Mat. Sci. 40 (2005) 3927 (https://link.springer.com/article/10.1007/s10853-005-0714-8)
I. F. Vankelecom, E. Scheppers, R. Heus, J. B. Uytterhoeven, J. Phys. Chem. 98 (1994) 12390 (https://doi.org/10.1021/j100098a038)
Q. Cai, Z. S. Luo, W. Q. Pang, Y. W. Fan, X. H. Chen, F. Z. Cui, J. Chem. Mater. 13 (2001) 258 (https://doi.org/10.1021/cm990661z)
M. Janicke, C. Landry, S. Christiansen, S. Birtalan, G. Stucky, B. Chmelka, Chem. Мat. 11 (1999) 1342 (https://doi.org/10.1021/cm981135v)
A. Jomekian, M. Pakizeh, A. R. Shafiee, S. A. A. Mansoori, Sep. Purif. Technol. 80 (2011) 556 (https://doi.org/10.1016/j.seppur.2011.06.011)
T. C. Merkel, Z. He, I. Pinnau, B. D. Freeman, P. Meakin, A. J. Hill, Macromolecules 36 (2003) 6844 (https://doi.org/10.1021/ma0341566)
I. F. Vankelecom, S. van den Broeck, E. Merckx, H. Geerts, P. Grobet, J. B. Uytterhoeven, J. Phys. Chem. 100 (1996) 3753 (https://doi.org/10.1021/jp9526511).