New structure-based models for the prediction of normal boiling point temperature of ternary azeotropes Scientific paper

Main Article Content

Zohreh Faramarzi
https://orcid.org/0000-0001-9811-2198
Fatemeh Abbasitabar
https://orcid.org/0000-0002-2762-5145
Hossein Jalali Jahromi
https://orcid.org/0000-0001-8483-6013
Maziar Noei
https://orcid.org/0000-0001-8666-0824

Abstract

Recently, development of the QSPR models for mixtures has rec­eived much attention. The QSPR modelling of mixtures requires the use of the appropriate mixture descriptors. In this study, 12 mathematical equations were considered to compute mixture descriptors from the individual components for the prediction of normal boiling points of 78 ternary azeotropic mixtures. Mul­tiple linear regression (MLR) was employed to build all QSPR models. Mem­orized_ACO algorithm was employed for subset variable selection. An ensemble model was also constructed using averaging strategy to improve the predictability of the final QSAR model. The models have been validated by a test set comprised of 24 ternary azeotropes and by different statistical tests. The resulted ensemble QSPR model had R2training, R2test and q2 of 0.97, 0.95, and 0.96, respectively. The mean absolute error (MAE), as a good indicator of model performance, were found to be 3.06 and 3.52 for training and testing sets, respectively.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
Z. Faramarzi, F. Abbasitabar, H. . Jalali Jahromi, and M. . Noei, “New structure-based models for the prediction of normal boiling point temperature of ternary azeotropes : Scientific paper”, J. Serb. Chem. Soc., vol. 86, no. 7-8, pp. 685–698, Aug. 2021.
Section
Theoretical Chemistry

References

M. B. Franke, Comput. Chem. Eng. 89 (2016) 204 (https://doi.org/10.1016/j.compchemeng.2016.03.027)

Q.-K. Le, I. J. Halvorsen, O. Pajalic, S. Skogestad, Chem. Eng. Res. Des. 99 (2015) 111 (https://doi.org/10.1016/j.cherd.2015.03.022)

W. Li, L. Zhong, Y. He, J. Meng, F. Yao, Y. Guo, et al., Ind. Eng. Chem. Res. 54 (2015) 7668 (https://doi.org/10.1021/acs.iecr.5b00572)

Y. Wang, S. Liang, G. Bu, W. Liu, Z. Zhang, Z. Zhu, Ind. Eng. Chem. Res. 54 (2015) 12908 (https://doi.org/10.1021/acs.iecr.5b03666)

B. ZareNezhad, N. Hosseinpour, Energy Convers. Manage. 50 (2009) 1491 (https://doi.org/10.1016/j.enconman.2009.02.016)

Y. Tavan, S. Shahhosseini, Energy Technol. 4 (2016) 424 (https://doi.org/10.1002/ente.201500287)

K. Tochigi, D. Tiegs, J. Gmehling, K. Kojima, J. Chem. Eng. Jpn. 23 (1990) 453 (https://doi.org/10.1252/jcej.23.453)

S. M. Hosseini, M. M. Alavianmehr, D. Mohammad-Aghaie, F. Fadaei-Nobandegani, J. Moghadasi, J. Ind. Eng. Chem. 19 (2013) 769 (https://doi.org/10.1016/j.jiec.2012.10.013)

J. Gmehling, J. Li, M. Schiller, Ind. Eng. Chem. Res. 32 (1993) 178 (https://doi.org/10.1021/ie00013a024)

M. J. Hait, C. L. Liotta, C. A. Eckert, D. L. Bergmann, A. M. Karachewski, A. J. Dallas, et al., Ind. Eng. Chem. Res. 32 (1993) 2905 (https://doi.org/10.1021/ie00023a064)

S. Yousefinejad, F. Honarasa, H. Montaseri, RSC Adv. 5 (2015) 42266 (https://doi.org/10.1039/C5RA05930E)

A. Klamt, F. Eckert, Fluid Phase Equilib. 172 (2000) 43 (https://doi.org/10.1016/s0378-3812(00)00357-5)

D. E. Nanu, T. W. De Loos, Mol. Phys. 102 (2004) 235 (https://doi.org/10.1080/00268970410001655871)

A. A. Oliferenko, P. V. Oliferenko, J. S. Torrecilla, A. R. Katritzky, Ind. Eng. Chem. Res. 51 (2012) 9123 (https://doi.org/10.1021/ie202550v)

A. R. Katritzky, I. B. Stoyanova-Slavova, K. Tämm, T. Tamm, M. Karelson, J. Phys. Chem., A 115 (2011) 3475 (https://doi.org/10.1021/jp104287p)

I. Oprisiu, S. Novotarskyi, I. V. Tetko, J. Cheminform. 5 (2013) 4 (https://doi.org/10.1186/1758-2946-5-4)

V. Zare-Shahabadi, M. Lotfizadeh, A. R. A. Gandomani, M. M. Papari, J. Mol. Liq. 188 (2013) 222 (https://doi.org/10.1016/j.molliq.2013.09.037)

T. Gaudin, P. Rotureau, G. Fayet, Ind. Eng. Chem. Res. 54 (2015) 6596 (https://doi.org/10.1021/acs.iecr.5b01457)

Z. Faramarzi, F. Abbasitabar, V. Zare-Shahabadi, H. J. Jahromi, J. Mol. Liq. 296 (2019) 111854 (https://doi.org/10.1016/j.molliq.2019.111854)

Y. Demirel, Thermochim. Acta 339 (1999) 79 (https://doi.org/10.1016/s0040-6031(99)00211-7)

ChemDraw Ultra 6.0 and Chem3D Ultra, Cambridge Soft Corporation, Cambridge, MA

MOE, Chemical Computing Group Inc., Montreal (http://www.chemcomp.com)

R. Todeschini, V. Consonni, M. Pavan, Dragon Software Version 2.1, Chemometrics and QSAR Research Group, Milano, 2002

E. N. Muratov, E. V. Varlamova, A. G. Artemenko, P. G. Polishchuk, V. E. Kuz'min, Mol. Inform. 31 (2012) 202 (https://doi.org/10.1002/minf.201100129)

F. Abbasitabar, V. Zare-Shahabadi, SAR QSAR Environ. Res. 23 (2011) 1 (https://doi.org/10.1080/1062936x.2011.623316)

B. Hemmateenejad, M. Shamsipur, V. Zare-Shahabadi, M. Akhond, Anal. Chim. Acta 704 (2011) 57 (https://doi.org/10.1016/j.aca.2011.08.010)

V. Zare-Shahabadi, Med. Chem. Res. 25 (2016) 2787 (https://doi.org/10.1007/s00044-016-1666-z)

F. Abbasitabar, V. Zare-Shahabadi, Chemosphere 172 (2017) 249 (https://doi.org/10.1016/j.chemosphere.2016.12.095)

D. Baumann, K. Baumann, J. Cheminform. 6 (2014) 47 (https://doi.org/10.1186/s13321-014-0047-1)

D. L. Massart, B. G. M. Vandeginste, L. M. C. Buydens, S. De Jong, P. J. Lewi, J. Smeyers-Verbeke, Handbook of Chemometrics and Qualimetrics Part A, Elsevier, Amsterdam, 1997, pp. 286–288

S. Saaidpour, Phys. Chem. Res. 4 (2016) 61 (https://doi.org/10.22036/pcr.2016.11759)

F. Abbasitabar, V. Zare-Shahabadi, Drug Res (Stuttgart) 67 (2017) 476 (https://doi.org/10.1055/s-0043-108553)

K. Roy, S. Kar, P. Ambure, Chemom. Intell. Lab. Syst. 145 (2015) 22 (http://dx.doi.org/10.1016/j.chemolab.2015.04.013)

X. Bian, P. Diwu, Y. Liu, P. Liu, Q. Li, X. Tan, J. Chemom. 32 (2018) e2940 (https://doi.org/10.1002/cem.2940)

V. Zare-Shahabadi, F. Abbasitabar, M. Akhond, M. Shamsipur, J. Braz. Chem. Soc. 24 (2013) 1561 (http://dx.doi.org/10.5935/0103-5053.20130197)

S. Ma, S. Li, Ind. Eng. Chem. Res. 52 (2013) 543 (https://doi.org/10.1021/ie302909b)

A. A. Oliferenko, P. V. Oliferenko, J. S. Torrecilla, A. R. Katritzky, Ind. Eng. Chem. Res. 52 (2013) 545 (https://doi.org/10.1021/ie3033125)

S. Guariento, M. Tonelli, S. Espinoza, A. S. Gerasimov, R. R. Gainetdinov, E. Cichero, Eur. J. Med. Chem. 146 (2018) 171 (https://doi.org/10.1016/j.ejmech.2018.01.059)

O. Deeb, B. Hemmateenejad, Chem. Biol. Drug Des. 70 (2007) 19 (https://doi.org/10.1111/j.1747-0285.2007.00528.x)

R. Todeschini, V. Consonni, R. Mannhold, H. Kubinyi, G. Folkers. Molecular Descriptors for Chemoinformatics: Volume I: Alphabetical Listing / Volume II: Appendices, References, Wiley, New York, 2009, pp. 17–20.

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.