Photodegradation kinetics of organophosphorous with hydroxyl radicals: Experimental and theoretical study Scientific paper

Main Article Content

Seyda Aydogdu
https://orcid.org/0000-0003-0018-6856
Arzu Hatipoglu
https://orcid.org/0000-0001-9691-3485
Bahar Eren
https://orcid.org/0000-0002-1523-274X
Yelda Yalcin Gurkan
https://orcid.org/0000-0002-8621-2025

Abstract

The presence of organophosphorus compounds (OPs) in the environmental counterparts has been an important problem because of their toxicity. In this study, the photocatalytic degradation reactions of the three OPs with hydroxyl radical were investigated by both experimental and quantum chemical methods. Photocatalytic degradation kinetics of organophosphorus compounds were investigated under UV-A irradiation using TiO2 as the photocatalyst. The effects of the initial concentrations on the degradation rate have been examined. There was an observable loss of OPs in the presence of TiO2 photocatalyst under UV-A at 0.2 g TiO2 per 100 mL. The quantum chemical calculations have been carried out by the Density Functional Theory (DFT) at B3LYP/6-31g(d) level. Reaction pathways were modeled to find the most probable mechanism for OPs with the OH radical and to determine the primary intermediates. The rate constants of the eight reaction paths were calculated by the Transition State Theory. CPCM  (Conductor-like Polarizable Continuum Model) was used as the solvation model with the intention of understanding the water effect. Theoretical results were in agreement with experimental ones.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
S. Aydogdu, A. Hatipoglu, B. Eren, and Y. Yalcin Gurkan, “Photodegradation kinetics of organophosphorous with hydroxyl radicals: Experimental and theoretical study: Scientific paper”, J. Serb. Chem. Soc., vol. 86, no. 10, pp. 955–969, Sep. 2021.
Section
Physical Chemistry

References

M. B. Clovic, D. Z. Krstic, T. D. Lazerevic-Pasti, A. M. Bondvic, V. M. Vasic, Curr. Neuropharmacol. 11(3) (2013) 315 (https://pubmed.ncbi.nlm.nih.gov/24179466/)

M. Lily, A. K. Chandra, J. Fluor. Chem. 175 (2015) 185 (https://doi.org/10.1016/j.jfluchem.2015.04.019)

H. Laversin, A. El Masri, M. Al Rashidi, E. Roth, A. Chakir, Atmos. Environ. 126 (2016) 250 (https://doi.org/10.1016/j.atmosenv.2015.11.057)

A. M. Parker, Y. Lester, E. M. Spangler, U. Gunten, K. G. Linden, Chemosphere 182 (2017) 477 (https://doi.org/10.1016/j.chemosphere.2017.04.150)

Q. Zhang, X. Qu, W. Wang, Environ. Sci. Technol. 41 (2007) 6109 https://pubmed.ncbi.nlm.nih.gov/17937289)

Y. Zhou, Z. Yang, H. Yang, C. Zhang, X. liu, J. Mol. Model. 23 (2017) 139 (https://doi.org/10.1007/s00894-017-3277-0)

L. Zhang, B. Li, X. Meng, L. Huang, D. Wang, Environ. Sci. Pollut. Res. 22 (2015) 15104 (https://doi.org/10.1007/s11356-015-4669-2)

W. Li, Y. Zhao, X. Yan, J. Duan, C. P. Saint, S. Beecham, Chemosphere. 234 (2019) 204 (https://doi.org/10.1016/j.chemosphere.2019.06.058)

S. Agarwal, I. Tyagi, V. Kumar Gupta, M. H. Dehghani, A. Bagheri, K. Yetilmezsoy, A. Amrane, B. Heibati, S. Rodriguez-Couto, J. Mol. Liq. 221 (2016) 1237 (https://doi.org/10.1016/j.molliq.2016.04.076)

A. Almalraj, A. Pius, J. Water Process. Eng. 7 (2015) 94 (https://doi.org/10.1016/J.JWPE.2015.06.002)

C. Wu, K. G. Linden, Water Res. 44 (2010) 3585 (https://doi.org/10.1016/j.watres.2010.04.011)

A. Ozcan, Y. Sahin, M. A. Oturan, Water Res. 47 (2013) 1470 (https://doi.org/10.1016/j.watres.2012.12.016)

E. Evgenidou, I. Konstantinou, K. Fytianos, T. Albanis, J. Hazard. Mater. 137 (2006) 1056 (https://doi.org/10.1016/j.jhazmat.2006.03.042)

Q. Mei, J. Sun, D. Han, B. Wei, Z. An, X. Wang, J. Xie, J. Zhan, M. He, Chem. Eng. J. 373 (2019) 668 (https://doi.org/10.1016/j.cej.2019.05.095)

M. B. Kralj, P. Trebse, M. Franko, Trends Anal. Chem. 26 (11) (2007) 1020 (https://doi.org/10.1016/j.trac.2007.09.006)

J. Dang, L. Ding, X. Sun, Q. Zhang, W. Wang, Struct Chem. 25 (2014) 275 (https://doi.org/10.1007/s11224-013-0287-0)

Y. Bao, C. Zhang, W. Yang, J. Hu, X. Sun, Sci. Total Environ. 419 (2012) 144 (https://doi.org/10.1016/j.scitotenv.2012.01.004)

Q. Zhou, X. Sun, R. Gao, J. Hu, Atmos. Environ. 45 (2011) 3141 (https://doi.org/10.1016/j.scitotenv.2014.10.081)

P. Bouras, E. Stathatos, P. Lianos, Appl. Catal. B: Environ. 73 (2007) 51 (https://doi.org/10.1016/j.apcatb.2006.06.007)

M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, Jr., J.A. Montgomery, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin,; R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, J.D. Fox, Gaussian 09, Revision A.02 Gaussian, Inc., Wallingford, CT, 2009

A. D. Becke, J. Chem. Phys. 98 (1993) 5648 (https://doi.org/10.1063/1.464913)

C. Lee, W. Yang, R. G. Parr, Phys. Rev. B. 37 (1988) 785 (https://doi.org/10.1103/physrevb.37.785)

C. Gozalez, H. B. Schlegel, J. Phys. Chem. 94 (1990) 5523 (https://doi.org/10.1021/j100377a021)

D. C. Young, second ed., John Wiley & Sons, Inc., New York, 2001

I. N. Levine, Physical Chemistry, Sixth Ed., Mc Graw Hill Higher Education, New York, 2009

N. Sam, Hatipoğlu A., Koçtürk G., Çınar Z., J. Photochem. Photobiol. A 146 (2002) 189 (https://doi.org/10.1016/S1010-6030(01)00620-7)

A. Hatipoglu, D. Vione, Y. Yalçın, C. Minero, Z. Çınar, J. Photochem. Photobiol. A 215 (2010) 59 (https://doi.org/10.1016/j.jphotochem.2010.07.021)

Y. Zhou, X. Liu, W. Jiang, Y. Shu, J. Mol. Model. 24 (2018) 44 (https://doi.org/10.1007/s00894-018-3580-4)

C. Li, S. Zheng, J. Chen, H. Xie, Y. Zhang, Y. Zhao, Z. Du, Chemosphere 201 (2018) 557 (https://doi.org/10.1016/j.chemosphere.2018.03.034)

Ş. Aydoğdu, A. Hatipoğlu, J. Indian Chem. Soc 96 (2019) 1117

N. Mora-Diez, R. J. Alvarez-Idaboy, R. J. Boyd, J. Phys. Chem. A 105 (2001) 9034 (https://doi.org/10.1021/jp011472i)

B. S. Hammond, J. Am. Chem. Soc. 77 (2) (1955) 334 (https://doi.org/10.1021/ja01607a027)

E. A. Kozlova, P. G. Smirniotis, A. V. Vorontsov, J. Photochem. Photobiol. A 162 (2004) 503 (https://doi.org/10.1016/S1010-6030(03)00392-7)

A. V. Vorontsov, D. V. Kozlov, P. G. Smirniotis, V. N. Parmon, Kinet. Catal. 46 (2) (2005) 189 (https://doi.org/10.1007/s10975-005-0067-y)

B. Yang, Y. Wang, J. Shu, P. Zhang, W. Sun, N. Li, Y. Zhang, Chemosphere 138 (2015) 966 (https://doi.org/10.1016/j.chemosphere.2014.12.039).